
Aya
Release 0.3

nick-paul

Sep 07, 2023

CONTENTS

1 Contents 3
1.1 Tour of Aya . 3
1.2 Running / Installation . 7
1.3 Syntax Overview . 9
1.4 Operators . 25
1.5 Numbers . 29
1.6 Lists . 31
1.7 Characters . 36
1.8 Strings . 37
1.9 Blocks . 39
1.10 Functions . 42
1.11 Dictionaries . 42
1.12 Variables . 45
1.13 User-Defined Types . 46
1.14 Metaprogramming . 52
1.15 Standard library . 54
1.16 Canvas Input . 61
1.17 Debugging . 68

i

ii

Aya, Release 0.3

Aya is a terse stack based programming language originally intended for code golf and programming puzzles. The
original design was heavily inspired by CJam and GolfScript. Currently, Aya is much more than a golfing language as
it supports user-defined types, key-value pair dictionaries, natural variable scoping rules, and many other things which
allow for more complex programs and data structures than other stack based languages.

Aya comes with a standard library written entirely in Aya code. The standard library features types such as matrices,
sets, dates, colors and more. It also features hundreds of functions for working working on numerical computations,
strings, plotting and file I/O. It even features a basic turtle library for creating drawings in the plot window.

Aya also features a minimal GUI that interfaces with Aya’s stdin and stdout. The GUI features plotting, tab-completion
for special characters, and an interactive way to search QuickSearch help data.

Check out the Tour of Aya section for further information.

Note: This project is under active development.

CONTENTS 1

Aya, Release 0.3

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Tour of Aya

1.1.1 Basic language features

Aya is a stack based language.

aya> 1 1 +
2
aya> .# This is a line comment
aya> 1 2 + 10 * 3 / 10 -
0

Generally, most symbols that are not a lowercase letter are an operator (including uppercase letters). Extended operators
come in the form .*, M*, :*, where * is any character. Aya has many cool operators. For example:

• Levenshtein distance (^)

aya> "kitten" "sitting" ^
3

• Create range (R) and reshape (L)

aya> 9 R
[1 2 3 4 5 6 7 8 9]
aya> 9 R [3 3] L
[[1 2 3] [4 5 6] [7 8 9]]

• List primes up to N (Mp)

aya> 30 Mp
[2 3 5 7 11 13 17 19 23 29]

• Split string using regex (|)

aya> "cat,dog, chicken ,pig" "\\W*,\\W*" |
["cat" "dog" "chicken" "pig"]

• The Apply (#) operator is special in that it is parsed as an infix operator which can take another operator (or
block) on its right (in this case length (E)) and apply to each item in the list

3

Aya, Release 0.3

aya> 9 R [3 3] L #E
[3 3 3]
aya> 9 R [3 3] L #{E 1 +}
[4 4 4]

Many operators are broadcasted automatically. For example: the square root (.^), addition (+), multiplication (*), and
factorial (M!) operators. Aya also supports complex numbers (:-64i), fractional numbers (:1r2 is 1/2), and extended
precision numbers (:100x).

aya> [4 16 :-64i] .^
[2 4 :0i8]
aya> [1 2 3] :1r2 +
[:3r2 :5r2 :7r2]
aya> [1 2 3] [10 20 30] *
[10 40 90]
aya> [10 100 :100z] M!
[10 100 :100z] M!
[3628800 0␣
→˓:93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000z␣
→˓]

Lowercase letters and underscores are used for variables. The colon (:) operator is used for assignment. Like the apply
operator (#), it is one of the few “infix” operators.

aya> .# Objects are left on the stack after assignment
aya> "Hello" :first
"Hello"
aya> .# The ; operator pops and disgards the top of the stack
aya> "world!" :second ;

As seen above, almost everything else, including all uppercase letters, is an operator. The :P operator will print the
item on the top of the stack to stdout.

aya> first " " + second + :P
"Hello world!"

Aya has many types of objects. The :T operator is used to get the type. It returns a Symbol (::symbol_name)

aya> aya> 1 :T
::num
aya> [1 2 3] :T
::list
aya> [1 2 3] :T :T
::sym
aya> [1 [1 2 3] "hello" 'c {, 1:x } {2+} ::red] #:T
[::num ::list ::str ::char ::dict ::block ::sym]

You can create your own types

aya> struct point {x y}
<type 'point'>
aya> 1 2 point! :p
(1 2) point!

(continues on next page)

4 Chapter 1. Contents

Aya, Release 0.3

(continued from previous page)

aya> p :T
::point

Aya supports string interpolation.

aya> "$first from Aya! 1 + 1 is $(1 1 +)"
"Hello from Aya. 1 + 1 is 2"

Blocks ({...}) are first class objects. They can be evaluated with the eval (~) operator.

aya> 1 {1 +}
1 {1 +}
aya> 1 {1 +} ~
2

When a block is assigned to a variable, it will be automatically evaluated when the variable is de-referenced. This
allows the creation of functions.

aya> {2*}:double
{2 *}
aya> 4 double
8

Blocks may have arguments and local variables. In the example below, a, b, and c are arguments and x and y are local
variables.

aya> {a b c : x y,
a 2 * :x; .# local
b 3 * :y; .# local

[a b c x y] .# return a list with vars inside
}:myfun;

The following will call myfun and assign 1 to a, 2 to b, and 3 to c within the scope of the function.

aya> 1 2 3 myfun
[2 2 3 2 6 8]
aya> .# a b c x y are no longer in scope
aya> a
ERROR: Variable a not found
aya> x
ERROR: Variable a not found

Block headers may include type assertions and local variable initializers. By default all local variables are initialized
to 0 (see y in the example below).

aya> {a::num b::str : x(10) y z("hello"),
[a b x y z]

}:myfun;
aya> 1 "cats" myfun
[1 "cats" 10 0 "hello"]
aya> "dogs" "cats" myfun
TYPE ERROR: {ARGS}

(continues on next page)

1.1. Tour of Aya 5

Aya, Release 0.3

(continued from previous page)

Expected: ::num
Received: "dogs"

Aya also supports dictionaries. {,} creates an empty dictionary. . is used for dictionary access and .: is used for
assignment.

aya> {,} :d
{,
}
aya> 3 d.:x
{,
3:x;

}
aya> d.x
3
aya> .# Keys can also be assigned in the literal itself
aya> {, 3:x; }
{,
3:x;

}

Aya also supports operator overloading for many operators. Type \? overloadable in the Aya interpreter to get a list
of all overloadable operators.

aya> struct point {x y}
aya> def point::__add__ {other self,

other.x self.x +
other.y self.y +
self!

}
aya> 3 4 point! 5 6 point! +
(8 10) point!

Aya has a growing standard library including:

• 2d Matrix Object

• Dataframes

• JSON, CSV reading/writing

• Image reading/writing

• Sockets

• 2d graphics

• Plotting

• Math & statistics

• And more (see the standard library section)

The Aya core language supports many other cool things such as closures, built-in fraction and arbitrary precision
numbers, macro-like functions (the ``struct`` keyword above is defined completely in aya!), exception handling, built
in plotting and GUI dialogs, list comprehension, and more!

6 Chapter 1. Contents

Aya, Release 0.3

1.2 Running / Installation

Aya is written in java. Please ensure you have the latest version of java on your system.

Download the latest release from the releases page.

Once downloaded, simply double click aya.jar to run the aya GUI.

If your system does not support double clicking a jar to run it, you may optionally run it using the following command:

java -jar aya.jar

NOTE: aya.jar must be in the same directory as the rest of the files included in the download.

1.2.1 Running Examples

There are many example scripts in the examples/ directory. To run an example, type its name followed by the example
command:

aya> "nth_fib" example
The first 10 fib numbers are [1 1 2 3 5 8 13 21 34 55]

Some examples are in subfolders such as canvas, turtle, or plot. Run them using subfolder/example_name:

aya> "canvas/mandelbrot" example

1.2.2 Command Line Arguments

All arguments are optional.

• The first argument is the directory to point aya at when running.

• If the second argument is -i, run the aya repl directly in the terminal.

• All the following arguments are scripts to run

$ ls my_scripts/aya_scripts/
hello.aya
$ rlwrap java -jar ~/git/aya/aya.jar my_scripts/aya_scripts/ -i
aya> "hello.aya" G~
Hello world!

1.2.3 System Install

This step is only needed if you would like to add aya to your systems path. Currently only supports OSX/Linux

Aya supports running scripts directly from the command line. For example:

$ cat hello.aya
#!/usr/bin/env aya
"Hello world!" :P

$ chmod +x hello.aya
(continues on next page)

1.2. Running / Installation 7

https://github.com/aya-lang/aya/releases

Aya, Release 0.3

Fig. 1: img/mandelbrot_example.png

8 Chapter 1. Contents

Aya, Release 0.3

(continued from previous page)

$./hello.aya
Hello world!

To enable this, add aya/runnable/linux to your path:

For example, you can add this line to your bashrc:

PATH="$PATH:/<path_to_aya>/aya/runnable/linux"

1.3 Syntax Overview

1.3.1 Execution

Aya is a stack based language. Execution flows from left to right

aya> 1 2 +
3
aya> 1 2 + 4 *
12
aya> 1 2 + 4 * 3 /
4

1.3.2 Comments

Line Comments

Line comments begin with .#

aya> aya> .# comment
aya> 1 .# comment
1
aya> .#leading space optional

Block Comments

Block comments start with .{ and end with .}

.{ This is a
block comment! .}

.{
Also a block comment

.}

aya> .{ block .{ comments cannot be .} nested .}
SYNTAX ERROR: .} is not a valid operator

1.3. Syntax Overview 9

Aya, Release 0.3

1.3.3 Variables

Use :varname to assign a variable. Use the plain variable name to access

aya> 1 :x
1
aya> x
1

Single characters are supported

aya> 1 :
1
aya>
1

Any string of lowercase letters and underscores can be used as a variable.

aya> 1 :this_is_a_valid_variable
1

Any string of characters can be used as a variable if the literal is quoted. They cannot be accessed directly. These types
of variables are mostly useful for dictionaries.

aya> 1 :"Quoted Variable!"
1
aya> "Quoted Variable!" :S~
1

Numbers and uppercase letters cannot be used for variables

aya> 5 :MyVar0
Unexpected empty stack while executing instruction: :M
in :M .. y V ar 0}

Special Variables

Double leading and trailing underscores are used for special variables

See operator overloading and metatables for examples

1.3.4 Numbers

Main Page:Numbers

10 Chapter 1. Contents

./number.html

Aya, Release 0.3

Integers & Decimals

aya> 1
1
aya> 1.5
1.5
aya> .5
.5

Negative Numbers

- is parsed as an operator unless immediately followed by a number

aya> 1 2 - 3
-1 3
aya> 1 2 -3
1 2 -3

: can also be used to specify a negative number

aya> 1 2 :3
1 2 -3

Big Numbers

Arbitrary precision numbers have the form :Nz

aya> :123456789012345678901234567890z
:123456789012345678901234567890z
aya> :3.141592653589793238462643383279502884197169399z
:3.141592653589793238462643383279502884197169399z

Hexadecimal Literals

Hexadecimal literals have the form :0xN

aya> :0xfad
4013

If the hexadecimal does not fit in a standard integer, it will automatically be promoted to a big number.

aya> :0xdeadbeef
:3735928559z

1.3. Syntax Overview 11

Aya, Release 0.3

Binary Literals

Binary literals have the form :0bN

aya> :0b1011
11

If the literal does not fit in a standard integer, it will automatically be promoted to a big number.

aya> :0b1011101010101001010101001010101010001011
:801704815243z

Scientific/“e” Notation

Number literals of the form :NeM are evaluated to the literal number N * 10^M.

aya> :4e3
4000
aya> :2.45e12
2450000000000
aya> :1.1e-3
.0011

Fractional Numbers

Fractional literals have the form :NrM

aya> :1r2
:1r2
aya> :3r
:3r1
aya> :-1r4
:-1r4

PI Times

Number literals of the form :NpM are evaluated to the literal number (N * PI)^M. If no M is provided, use the value 1.

aya> :1p2
9.8696044
aya> :1p
3.14159265
aya> :3p2
88.82643961

12 Chapter 1. Contents

Aya, Release 0.3

Root Constants

Number literals of the form :NqM are evaluated to the literal number N^(1/M). The default value of M is 2.

aya> :2q
1.41421356
aya> :9q
3
aya> :27q3
3

Complex numbers

Complex numbers are built in. :NiM creates the complex number N + Mi. Most mathematical operations are supported

aya> :-1i0
:-1i0
aya> :-1i0 .^
:0i1
aya> :3i4 Ms
:3.85373804i-27.01681326
aya> :3i4 Mi .# imag part
4
aya> :3i4 Md .# real part
3

Number Constants

constants follow the format :Nc

number value
:0c pi
:1c e
:2c double max
:3c double min
:4c nan
:5c inf
:6c -inf
:7c int max
:8c int min
:9c char max

1.3. Syntax Overview 13

Aya, Release 0.3

1.3.5 Characters

Main Page:Characters & Strings

Standard Characters

Characters are written with a single single quote to the left of the character:

aya> 'a
'a
aya> ' .# space character
'
aya> '' .# single quote character
''
aya> 'ÿ .# supports unicode
'ÿ

Hex Character Literals

Hex literal characters are written using a '\x___' and require closing quotes.

aya> '\xff'
'ÿ
aya> '\x00a1'
'¡

Named Character Literals

Many characters have names. All names consist only of lowercase alphabetical characters. Use Mk operator to add new
named characters.

'\n' .# => <newline>
'\t' .# => <tab>
'\alpha' .# => ''
'\pi' .# => ''

1.3.6 Strings

Main Page:Characters & Strings

14 Chapter 1. Contents

./characters_and_strings.html
./characters_and_strings.html

Aya, Release 0.3

Standard String Literals

String literals are written with double quotes ("):

aya> "Hello, world!"
"Hello, world!"

Use \\ to escape to double quotes. (string printing in the REPL will still display the escape character)

aya> "escape: \" cool"
"escape: \" cool"
aya> "escape: \" cool" println
escape: " cool

Strings may span multiple lines.

"I am a string containing a newline character
and a tab."

Special Characters in Strings

Strings can contain special characters using \{___}. Brackets can contain named characters or Unicode literals.

"sin(\{theta}) = \{alpha}" .# => "sin() = "
"\{x00BF}Que tal?" .# => "¿Que tal?"

String Interpolation

Use $ for string interpolation

aya> 10 :a;
aya> "a is $a"
"a is 10"

Use $(...) for expressions

aya> "a plus two is $(a 2 +)"
"a plus two is 12"

Use \ to keep the $ char

aya> 10:dollars;
aya> "I have \$$dollars."
"I have $10"

If used with anything else, keep the $

aya> "Each apple is worth $0.50"
"Each apple is worth $0.50"

1.3. Syntax Overview 15

Aya, Release 0.3

Long String Literals

Use triple quotes for long string literals.

"""This is
a long string
literal"""

No escape characters or string interpolation is processed

aya> """This is a long string literal $foo \{theta}"""
"This is a long string literal $foo \{theta}"

1.3.7 Symbols

Symbols are primarily used for metaprogramming. Symbols are any valid variable name starting with ::

aya> ::my_symbol
::my_symbol

Symbols can be any string if single quotes are used immediately after the ::

aya> ::"My Symbol"
::"My Symbol"

1.3.8 Lists

Main Page:Lists

List Literals

Lists are written with square brackets ([]) and must not contain commas. They may contain any data type:

aya> [1 2 3]
[1 2 3]
aya> []
[]
aya> [1 2 "Hello" [3 4]]
[1 2 "Hello" [3 4]]

Lists may also contain expressions:

aya> [1 2 + 3 4 +]
[3 7]

16 Chapter 1. Contents

./lists.html

Aya, Release 0.3

List Stack Captures

Use [N| ...] to capture items off the stack into the list

aya> 9 [1| 8 7 6]
[9 8 7 6]
aya> 10 9 [2| 8 7 6]
[10 9 8 7 6]
aya> 10 9 [2|]
[10 9]

List Comprehensions

Seelist comprehensions

Indexing

Get a value from a list

Use .[(index)] to get a value from a list

aya> [1 2 3 4] :list
[1 2 3 4]
aya> list.[0]
1
aya> list.[:-1]
4

Set a value at an index in a list

Use (value) (list) .[(index)] to set a the value in a list at an index

aya> [1 2 3 4] :list
[1 2 3 4]
aya> 10 list.:[0]
[10 2 3 4]

1.3.9 Dictionaries

Main Page:Dictionaries and User Types

1.3. Syntax Overview 17

./lists.html
./dictionaries.html

Aya, Release 0.3

Dictionary Literals

Dictionary literals have the form {, ... }. All variables assigned between {, and } are assigned to the dictionary

aya> {, 1:a 2:b }
{,
2:b;
1:a;

}

{,} creates an empty dict

aya> {,}
{,}

Getting Values

Use dot notation to get values from a dict:

aya> {, 1:a 2:b } :d
{,
2:b;
1:a;

}
aya> d.a
1
aya> d .b
2

Or use strings or symbols with index notation (.[])

aya> d.["a"]
1
aya> d.[::a]
1

Or use :I operator

aya> d ::a I
1
aya> d "a" I
1

Dot notation can be used with quoted variables

aya> {, 1:"Hello, world!" } :d
{,
1:"Hello, world!";

}
aya> d."Hello, world!"
1

18 Chapter 1. Contents

Aya, Release 0.3

Setting Values

Use .: notation to set values of a dict

aya> {,} :d
{,}
aya> 10 d.:a
{,
10:a;

}

Or using strings or symbols with index notation (.:[])

aya> 11 d.:["b"]
{,
11:b;
10:a;

}
aya> 12 d.:[::c]
{,
11:b;
10:a;
12:c;

}

This notation can be used with quoted variables

aya> {,}:d
{,}
aya> 10 d.:"Hello, world!"
{,
10:"Hello, world!";

}

1.3.10 Blocks

Main Page:Blocks & Functions

Basic Blocks

Use {...} to define a code block.

aya> {2 +}
{2 +}

If a code block is assigned to a variable, execute it immediately when the variable is accessed

aya> {2 +}:add_two
{2 +}
aya> 4 add_two
6

1.3. Syntax Overview 19

./blocks_and_functions.html

Aya, Release 0.3

Short Block Notation

Any set of tokens following a tick (```) until an operator or variable will be parsed as a block. Useful for saving a
character when golfing

aya> `+
{+}
aya> `1 + 1
{1 +} 1
aya> `"hello" 1 'd +
{"hello" 1 'd +}

This notation also terminates at variables names

aya> `x 1
{x} 1
aya> `1 x 1
{1 x} 1

Block Headers

Use a comma in a block to create a block header. Block headers define local variables and block arguments

See Variables and Scope and Blocks and Functions for more details.

If the header is empty, the block is parsed as a dict (see Dictionary)

aya> {, 1:a }
{,
1:a;

}

Arguments

Add arguments to a block

aya> {a b c, a b + c -}:foo
{a b c, a b + c -}
aya> 1 2 3 foo
0

Arguments can have type assertions. The block will fail if the type does not match

aya> {a::num b::str, "a is $a, b is $b"}:foo
{a::num b::str, "a is $a, b is $b"}
aya> 1 "two" foo
"a is 1, b is two"
aya> "one" 2 foo

{ARGS}
Expected:::str
Received:2

in a::num b::str, .. "a is $a, b is $b"}
(continues on next page)

20 Chapter 1. Contents

./variables_and_scope.html
./blocks_and_functions.html

Aya, Release 0.3

(continued from previous page)

Function call traceback:
Error in: foo

Local Variables

To declare local variables for a block, use a : in the header: {: ... ,}

aya> {: local_a local_b, 10:local_a 12:local_b 14:nonlocal_c} ~
10 12 14
aya> local_a
Undefined variable 'local_a'
in local_a .. }

aya> nonlocal_c
14

Use parenthesis after the local variable to set the initial value

aya> {: local_a(99) , local_a} ~
99

Use ^ after a local variable to “capture” it from the surrounding scope

aya> 1:a
1
aya> {: a^, }
{: a(1),}

Can mix & match locals and arguments

aya> 9 :captured_local
9
aya> { arg typed_arg::str : default_locl initialized_local(10) captured_local^, }
{arg typed_arg::str : default_locl(0)initialized_local(10)captured_local(9),}

1.3.11 Operators

Main Page:Operators

Standard Operators

All single uppercase letters except M are operators

aya> 6 R
[1 2 3 4 5 6]
aya> 4 [5] J
[4 5]

1.3. Syntax Overview 21

./operators.html

Aya, Release 0.3

“Dot” Operators

Most characters immediately following a dot (.) are an operator

aya> 6 .R
[0 1 2 3 4 5]
aya> 6 .!
1

Exceptions

Special Case Description
.<grave> Deference Without Execution
.# Line Comment
.{ Block Comment
.' Symbol

Dereference Without Executing (.<grave>)

.<grave> Dereference a variable without executing the block

aya> {1 2 +}:f
{1 2 +}
aya> f
3
aya> f.`
{1 2 +}

If the variable is not a block dereference it normally

aya> 1:a
1
aya> a.`
1

“Colon” Operators

Most characters immediately following a color (:) are an operator

aya> [1 2] [2] :|
[1]

22 Chapter 1. Contents

Aya, Release 0.3

Exceptions

Special Case Description
:" Symbol
:{ Extension Operator

“Misc” Operators

M plus any character is an operator

aya> "Hash" M#
635696504
aya> 0.5 Ms
.47942554

Non-Standard “Infix” Stack Operators

List Map (:#)

The :# operator takes a block on its right and maps it to the list on the stack

aya> [1 2 3] :# {1 +}
[2 3 4]

List Map Shorthand (#)

SeeBroadcast Operator

Same as :# but automatically creates a block using short block notation

aya> [1 2 3] # 1 +
[2 3 4]

Capture Instructions (:`)

Takes a block B and a number N from the stack. Captures N instructions from the instruction stack.

aya> {P} 2 :` 1 +
"[{1} {+}]"

1.3. Syntax Overview 23

./lists.html

Aya, Release 0.3

Extension Operators

Extension operators have the form :{...}.

aya> 123456789 "dd/MM/yyyy HH:mm:ss" :{date.format}
"02/01/1970 05:17:36"

These operators are always wrapped in the standard library. They should almost never be used for normal development

aya> import ::date
aya> 123456789 date!
Jan 02, 1970 5:17:36 AM

1.3.12 User Types

Struct

Defining A Struct

Create a struct with the following syntax:

struct <typename> {<member> <vars> ...}

For example:

aya> struct point {x y}
aya> point
(struct ::point [::x ::y])

Create Instance Of Struct

To create an instance of a struct, use the ! operator on the type. Member variables should exist on the stack

aya> struct point {x y}
aya> 1 2 point!
(1 2) point!

Accessing Values of a Struct

Use standard dot notation to acces user type values

aya> struct point {x y}
aya> 1 2 point! :p
(1 2) point!
aya> p.x
1
aya> p.y
2

24 Chapter 1. Contents

Aya, Release 0.3

Struct Member Functions

Use the def keyword to define member functions for structs

aya> def point::format {self, "<$(self.x), $(self.y)>"}
aya> 1 2 point! :p
(1 2) point!
aya> p.format
"<1, 2>"

1.3.13 Golf Utilities

Golf Constants

Any single-character key stored in __cdict__ can be accessed using ¢ + that character

aya> {, "Hello!":"!" 10:a }:__cdict__
{,
"Hello!":"!";

}
aya> ¢!
"Hello!"
aya> ¢a
10

golf standard library defines many useful variables in __cdict__

aya> import ::golf
aya> ¢Q
["QWERTYUIOP" "ASDFGHJKL" "ZXCVBNM"]
aya> ¢½
[1 2]

1.4 Operators

1.4.1 Type Abbreviations

Type Abbreviation
Number N
String S
Char C
Block B
Dict D
Symbol J

1.4. Operators 25

Aya, Release 0.3

1.4.2 Operator Table

Name Args Ops Overload
! N|C N : 1-N (logical not, complementary probability), C : swap case __new__
LA..#A LA..#A : map
$ A A : deepcopy (duplicate)
% LB|LS|LC|BN LB : fold, LS : join, LC : join, BN : repeat
& NN|SS NN : bitwise and, SS : list all expressions matching the regex __and__ / __rand__
* NN NN : multiply __mul__ / __rmul__
+ NN|CC|SA|AS NN : add, CC : add, SA : append string, AS : append string __add__ / __radd__
- NN|CC NN : subtract, CC : subtract __sub__ / __rsub__
/ NN NN : divide __div__ / __rdiv__
; A A : pop and discard
< NN|SS|CC NN : less than, SS : less than, CC : less than __lt__ / __rlt__
= AA AA : equality __eq__
> NN|SS|CC NN : greater than, SS : greater than, CC : greater than __gt__ / __rgt__
? AA AA : if A1, then A2. If A2 is block, execute it
@ AAA AAA : rotates the top three elements on the stack [abc->bca]
A A A : wrap in list
B J|L|N|C J : increment in place, L : uncons from front, N : increment, C : increment __inc__
C L|S|N L : sort least to greatest, S : sort least to greatest, N : bitwise not __sort__
D ALN ALN : set index __setindex__
E L|N|S L : length, N : 10^N, S : length __len__
G S|N S : read a string from a filename or URL, N : isprime
H LA|DS|DC|DJ|SA LA : has; 1 if list contains object, DS : has; 1 if dict contains key, DC : has; 1 if dict contains key, DJ : has; 1 if dict contains key, SA : has; 1 if string contains substring
I LB|LL|LN LB : filter, LL : get index, LN : get index __getindex__
J LA|AA|LL|AL LA : add to list, AA : create list [A A], LL : join lists, AL : add to list
L LL|AN|NL LL : reshape, AN : create list by repeating A N times, NL : reshape
N LA|DS|DJ|SS LA : return index of first occurance, -1 if not found; keep list on stack, DS : contains key; keep dict on stack, DJ : contains key; keep dict on stack, SS : return index of first occurance, -1 if not found; keep list on stack
O LB|DB LB : Map block to list, DB : Map block to dict __each__
P A A : to string __str__
Q L|N L : random choice, N : N>0: random number 0-N, N<0: random number N-0, N=0: any int __random__
R L|N|C L : len L = 2: range [N1, N1+1, . . . , N2], len l = 3: range [N1, N2, . . . , N3], N : range [1, 2 .. N], C : range [1, 2 .. N] __range__
S SC|LN|SS SC : split at char, LN : split list at index, SS : split at regex
T N N : negate __negate__
U L L : reverse __reverse__
V J|L|N|C J : decrement in place, L : uncons from back, N : decrement, C : decrement __dec__
W B|L|D B : while loop (repeat as long as block returns true), L : sum (fold using +), D : export all variables
X A A : assign to variable x and pop from stack
Y A A : assign to variable y and leave on stack
Z N|S N : cast to bignum, S : parse to bignum
\\ AA AA : swap top two elements on the stack
^ NN|SS NN : power, SS : levenshtein distance __pow__ / __rpow__
| NN NN : logical or __or__ / __ror__
~ B|L|S|C|D B : evaluate, L : dump to stack, S : evaluate, C : evaluate, D : set variables if they exist in the local scope
.! B|N|S B : copy block without header, N : signum, S : parse if number __signum__
.$..AN ..AN : copies the Nth item on the stack to the top (not including N)
.% NN NN : integer division __idiv__ / __ridiv__
.& SSS|LLB|SNN|LNN|NNN SSS : replace all occurances of the regex S1 with S2 in S3, LLB : zip with, SNN : convert base of N|S|L from N1 to N2, LNN : convert base of N|S|L from N1 to N2, NNN : convert base of N|S|L from N1 to N2
.' L|N|S L : convert number list to string using UTF-8 encoding, N : cast to char, S : cast to char

continues on next page

26 Chapter 1. Contents

Aya, Release 0.3

Table 1 – continued from previous page
.(NN NN : left bitwise shift
.) NN NN : signed right bitwise shift
.* B|L B : decompile, L : compile
.+ NN|BD|BJ|BL<J>|DD NN : gdc, BD : swap vars in a copy of B for values defined in D, BJ : constant capture variable from outer scope, BL<J> : constant capture variables from outer scope, DD : update D1 with the values from D2 (modify D1)
.- DS|DJ|LL|NN|LN DS : remove key from dict, DJ : remove key from dict, LL : remove items at indices L1 from L2, NN : lcm, LN : remove item at index N from L
./ N N : ceiling __ceil__
.; ..A ..A : clear the entire stack
.< SN|LN|NN|SS|CC SN : head / pad ‘ ‘, LN : head / pad 0, NN : greater of, SS : greater of, CC : greater of __head__
.= LA|LL|AL LA : element-wise equivalence, LL : element-wise equivalence, AL : element-wise equivalence
.> SN|LN|NN|SS|CC SN : tail / pad ‘ ‘, LN : tail / pad 0, NN : lesser of, SS : lesser of, CC : lesser of __tail__
.? AAA AAA : if A1 then A2, else A3. If A2/A3 are blocks, execute
.@ ..AN ..AN : moves the Nth item on the stack (not including N) to the top
.A ..A ..A : wrap entire stack in a list
.B AL AL : append item to the back of a list
.C LB|NN LB : sort least to greatest by applying B to L, NN : xor
.D A A : throw an exception containing A
.E L L : length, keep list on stack __len__
.F L L : flatten nested list
.G ASN ASN : write A as a string to file located at S. N = 0, overwrite. N = 1, append
.I LNA|DSA|DJA LNA : getindex with default value, DSA : getindex with default value, DJA : getindex with default value __getindex__
.K BB BB : try B1, if error, execute B2. Neither block has access to the global stack
.M A A : get metatable
.N LB LB : return the index of the first element of L that satifies E; keep list on stack
.O AB AB : apply
.P A A : print to stdout
.Q - - : return a random decimal from 0 to 1
.R L|N L : linspace [from to count], if count not provided, use 100, N : range [0, 1, .., N-1]
.S LL|LN LL : rotate [rows cols], LN : rotate]
.T L L : transpose a 2d list
.U S S : requests a string using a ui dialog, S is the prompt text
.V AL AL : append item to back of list
.\\ N N : floor __floor__
.^ N|S N : square root, S : quote regex __sqrt__
.| B|N B : get meta information for a block, N : absolute value __abs__
.~ B|J|S|C|D B : get contents of block, J : deref variable; if not a block, put contents in block, S : parse contents to a block, C : parse contents to a block, D : set all variables
:! AA AA : assert equal
:# L:#B|D:#B L:#B : map, D:#B : map over key value pairs __each__
:$..AN ..AN : copies the first N items on the stack (not including N)
:% NN NN : mod __mod__ / __rmod__
:& A A : duplicate reference (same as $ but does not make a copy)
:' S|N|C S : convert a string to bytes using UTF-8 encoding, N : identity; return N, C : to int
:* LLB LLB : outer product of two lists using B
:; ..AA ..AA : clear all but the top of the stack
:< NN|SS|CC NN : less then or equal to, SS : less then or equal to, CC : less then or equal to __leq__ / __rleq__
:= AJ|AC|AS AJ : assign A to variable, AC : assign A to variable, AS : assign A to variable
:> NN|SS|CC NN : greater than or equal to, SS : greater than or equal to, CC : greater than or equal to __geq__ / __rgeq__
:? A A : convert to boolean
:@ AA AA : isinstance
:A ..AN ..AN : collect N items from stack into list
:B S S : interpolate string

continues on next page

1.4. Operators 27

Aya, Release 0.3

Table 1 – continued from previous page
:C J|S J : convert symbol to string name, S : return S
:D ASD|AJD ASD : set dict index, AJD : set dict index
:E L|D L : shape, D : number or items in a dict
:G n/a : Return the variable scope stack as a list of dicts
:I DS|DJ DS : get dict item from key, DJ : get dict item from key
:J LA|AA|LL|AL LA : add to list (modify list), AA : create list [A A], LL : concatenate lists (modify list 1), AL : add to list (modify list)
:K D D : return a list of keys as symbols
:M BD|DD BD : duplicate block with the given metadata, DD : set D1’s meta to D2 leave D1 on stack
:N LA LA : find all instances of A in L
:O AAB AAB : apply (2-arg)
:P A A : println to stdout
:R - - : readline from stdin
:S B|S|C B : if block has single var or op convert to symbol list, else return empty list, S : convert to symbol, C : convert to symbol
:T A A : type of (returns a symbol)
:V D D : return a list of values
:Z N N : sleep (milliseconds)
:` BN:`A BN:`A : wrap next N instructions in a block
:| LL LL : remove all elements in L2 from L1
:~ L L : remove duplicates
M! N N : factorial __fact__
M# A A : hash code of the object
M$ - - : system time in milliseconds
M? B|N|S B : get help data for operator, N : list op descriptions where N=[0:std, 1:dot, 2:colon, 3:misc], S : search all help data
MC N N : inverse cosine __acos__
MI NN NN : create complex number
ML N N : base-10 logarithm __log__
MS N N : inverse sine __asin__
MT N N : inverse tangent __atan__
Ma J J : Aya meta information
Mb B|J B : duplicate block, add locals if they do not exist, J : is defined
Mc N N : cosine __cos__
Md N|S N : cast to double, S : parse double, if invalid, return 0.0 __float__
Me N N : exponential function __exp__
Mi N N : imag part of complex number __imag__
Mk CS|NN CS : add special character, NN : unsigned right bitshift
Ml N N : natural logarithm __ln__
Mm D D : true if the dict has a metatable, leave D on stack
Mp N N : list primes up to N
Mr N N : convert to fractional number
Ms N N : sine __sin__
Mt N N : tangent __tan__
Mu NN NN : y x Mu => atan2(y,x)

28 Chapter 1. Contents

Aya, Release 0.3

1.5 Numbers

Aya has several representations for numbers: Num (represented by a double), BigNum, Rationals, and Complex (com-
ing soon). Numbers are only promoted when needed. Number literals are always converted to Nums. Aya uses standard
mathematical operators.

3 4 + .# => 7
5 6 - .# => -1
2 0.5 * .# => 1.0
3 2 ^ .# => 9
6 4 / .# => 1.5
6 2 / .# => 3

- is never a unary operator.

8 3 -1 .# is evaluated as (8 3-) 1 => 5 1
-1 .# ERROR: Empty stack at operator '-'

To write negative numbers, use a colon (with or without a -)

:1.5 .# => -1.5
:-1.5 .# => -1.5

1.5.1 Special Number Literals

SeeSyntax Overview: Numbers

Special number literals always begin with a colon. Special number literals can be used to create negative numbers,
bignums, rationals, and complex numbers (coming soon).

.# A colon paired with a number with no additional formatting is negative
:3 .# -3
:-3 .# -3

.# BigNums end with a z
:123z .# 123
:-3.1232z .# -3.1232

.# Rational numbers separated numerator and denominator with a r
:1r2 .# 1/2
:3r .# 3/1

.# Complex numbers are separated with an i
:1i .# The imaginary unit
:2i5 .# 2i + 5

Special number literals also provide ways for creating numbers using binary and hexadecimal formatting.

.# Hexadecimals begin with :0x

.# All letters must be lowercase
:0xff .# 255
:0x111 .# 273

(continues on next page)

1.5. Numbers 29

./syntax_overview.html#numbers

Aya, Release 0.3

(continued from previous page)

.# Binary literals begin with :0b
:0b11010 .# 26

.# Large hexidecimal and binary numbers are converted to BigNums
:0xfffffff .# 268435455 (Num)
:0xffffffff .# 4294967295 (BigNum)

1.5.2 Misc. Number Literals

Like all number literals, these values are evaluated pre-runtime.

Scientific Notation

Number literals of the form :NeM are evaluated to the literal number N * 10^M.

aya> :4e3
4000
aya> :2.45e12
2450000000000
aya> :1.1e-3
.0011

PI Times

Number literals of the form :NpM are evaluated to the literal number (N * PI)^M. If no M is provided, use the value 1.

aya> :1p2
9.8696044
aya> :1p
3.14159265
aya> :3p2
88.82643961

Root Constants

Number literals of the form :NqM are evaluated to the literal number N^(1/M). The default value of M is 2.

aya> :2q
1.41421356
aya> :9q
3
aya> :27q3
3

30 Chapter 1. Contents

Aya, Release 0.3

1.6 Lists

SeeSyntax Overview: Lists

List literals are created using square brackets and do not need commas. Literals are first evaluated as their own stack.
The results remaining on the stack become the list items.

[1 2 3 4 5] .# Do not use commas
[1 2 + 7 2 - 3!] .# => [3 5 -3]

List literals can grab items from the outer stack using the format ... [num| ...] where num is an integer literal.

aya> 1 2 3 4 5 [3| 6 7 8]
1 2 [3 4 5 6 7 8]

aya> 'h 'e [2|'l 'l 'o]
"hello"

aya> "a" "b" [2|]
["a" "b"]

List grabbing only uses integer literals

aya> 2 :n
2
aya> 1 2 [n| 3 4]
ERROR: Empty stack at operator '|'
stack:

1 2
just before:

1.6.1 Essential List Operations

List Indexing

Lists are indexed using square bracket syntax following a .. For Example:

aya> ["the" "cat" "in" "the" "hat"]:list
["the" "cat" "in" "the" "hat"]
aya> list.[0]
"the"

Aya supports negative indexing, multiple indexing and filtering with this syntax.

aya> list.[:1]
"hat"
aya> list.[1 4]
["cat" "hat"]
aya> list.[{E 3 =}]
["the" "cat" "the" "hat"]

1.6. Lists 31

./syntax_overview.html#lists

Aya, Release 0.3

Arg Type Function Input Out put
Numb er Choose the nth item from

the list (starting from 0)
[1 2 3].[1] ``2 ``

List Use each item in the sec-
ond list to index the first ``”abc”.[1 2

2]``

" bcc "

Bloc k Filter the list. Take all
items that satisfy the block

[1 1 2 2]. [{1=}] [1 1]

Lists can also be indexed using the I operator:

aya> ["the" "cat" "in" "the" "hat"]:list
["the" "cat" "in" "the" "hat"]
aya> list 0 I
"the"
aya> list :1 I
"hat"

.I operator takes a default value if the index is out of bounds:

aya> ["hello" "world"] 0 "nope" .I
"hello"
aya> ["hello" "world"] 9 "nope" .I
"nope"

Use the following syntax to set elements of a list

item list.:[i]

which is equivalent to list[i] = item in C-style languages.

Essential List Operators

SeeOperators

Extend (K)

aya> [1 2 3] :list
[1 2 3]
aya> list [4 5 6] K
[1 2 3 4 5 6]
aya> list
[1 2 3 4 5 6]

32 Chapter 1. Contents

./operators.html

Aya, Release 0.3

Join (J)

Similar to ``K`` but never modifies either list

aya> [1 2 3] :list;
aya> list [4 5 6] J
[1 2 3 4 5 6]
aya> list
[1 2 3]

Reshape (L)

aya> 9R [3 3] L
[[1 2 3] [4 5 6] [7 8 9]]
aya> [1 2] [2 2 2] L
[[[1 2] [1 2]] [[1 2] [1 2]]]
aya> 100R [2 3] L
[[1 2 3] [4 5 6]]

Flatten (.F)

aya> [[1 2] [3] 4 [[5] 6]] .F
[1 2 3 4 5 6]

Pop from front / back

aya> [1 2 3] B
[1 2] 3
aya> [1 2 3] V
[2 3] 1

Append to front / back

aya> 1 [2 3] .B
[2 3 1]
aya> 1 [2 3] .V
[1 2 3]

1.6. Lists 33

Aya, Release 0.3

Generators

Range (R)

One item: create a range from 1 (or 'a') to that number.

10 R .# => [1 2 3 4 5 6 7 8 9 10]
'B R .# => "...56789:;<=>?@AB" (from char code `1` to the input char)

Two items: create a range from the first to the second.

[5 10] R .# => [5 6 7 8 9 10]
['z 'w] R .# => "zyxw"
"zw" R .# => "zyxw"

Three items: create a range from the first to the third using the second as a step.

[0 0.5 2] R .# => [0 0.5 1.0 1.5 2.0]
[2 2.5 4] R .# => [2 2.5 3 3.5 4]

1.6.2 List comprehension

When commas are used inside of a list literal, the list is created using list comprehension. List comprehension follows
the format [range, map, filter1, filter2, ..., filterK]. The range section is evaluated like the R operator.
When the list is evaluated, the sections are evaluated from left to right; first create the range, then map the block to the
values, then apply the filters. All filters must be satisfied for an item to be added to the list.

If the map section is left empty, the list is evaluated as a basic range.

aya> [10 ,]
[1 2 3 4 5 6 7 8 9 10]

aya> ['\U00A3' '\U00B0' ,]
"£¤¥¦§¨©ª«¬®¯°"

aya> [0 3 15 , T]
[0 -3 -6 -9 -12 -15]

Here are some examples using map and filter.

aya> [10, 2*]
[2 4 6 8 10 12 14 16 18 20]

aya> [10, 2*, 5<]
[2 4]

aya> [10, 2*, 5<, 4=!]
[2]

.# Can grab from stack
aya> 3 [1| 6 18, 2*]
[6 12 18 24 30 36]

34 Chapter 1. Contents

Aya, Release 0.3

If a list literal is used as the first section of a list comprehension, the list comprehension is simply applied to the inner
list.

aya> [[1 2 3 4 5], 2*, 7<]
[2 4 6]

If there are two or more lists used as the first argument of a list comprehension, and each list is the same length, all
respective elements of each list will be added to the stack when applying the map and filter sections.

aya> [[1 2 3][4 5 6], +]
[5 7 9]

aya> ["hello" "world", J]
["hw" "eo" "lr" "ll" "od"]

1.6.3 The Broadcast Operator

is a very powerful infix operator. It’s primary function is map. It takes the arguments from its right side and maps
them to the list on the left side.

[1 2 3] # {1 +} .# => [2 3 4]

If a block is not given on the right side, # will collect items until an operator or variable is encountered.

.# Same as the previous example
[1 2 3] # 1 + .# => [2 3 4]

will also collect items on its left side until a list is hit. It will add these items to the front of the block being mapped
to.

.# Also the same as the previous line
[1 2 3] 1 # + .# => [2 3 4]

This operator can be used to construct “for loops” on variables

"hello" :str;
str # {c,

c toupper
}
=> "HELLO"

The :# operator works the same way except it always takes a list on the left and a block on the right:

list :# {block}

aya> [1 2 3] :# {3+}
[4 5 6]

aya> [1 2 3] 3 :# +
ERROR: Empty stack at operator ':#'

aya> [1 2 3] 3 # +
[4 5 6]

(continues on next page)

1.6. Lists 35

Aya, Release 0.3

(continued from previous page)

aya> [1 2 3] 3 :# {+}
TYPE ERROR: Type error at (:#):

Expected ((L:#B|D:#B))
Recieved ({+} 3)

stack:
[1 2 3]

just before:

1.7 Characters

SeeSyntax Overview: Characters

Character literals are created using single quotes. Most characters do not need closing quotes.

'a .# => 'a
'p'q .# => 'p 'q

1.7.1 Special Characters

Using a \ after a single quote denotes a special character. Special characters always need a closing single quote.

Hex character literals

Hex literal characters are written using a '\x___' and need closing quotes.

aya> '\x00FF'
'ÿ'
aya> '\x00A1'
'¡'

Named Characters

Many characters have names. All names consist only of lowercase alphabetical characters. Named characters can be
used like so within Aya:

'\alpha' .# => ''
'\pi' .# => ''
'\because' .# => ''
'\n' .# => <newline>
'\t' .# => <tab>

To add or override a named character from within Aya, use the Mk operator.

aya> '\integral'
SYNTAX ERROR: '\integral' is not a valid special character

aya> '\U222b' "integral" Mk
(continues on next page)

36 Chapter 1. Contents

./syntax_overview.html#characters

Aya, Release 0.3

(continued from previous page)

aya> '\integral'
''

1.8 Strings

SeeSyntax Overview: Strings

Strings are created using the double quote character ".

"I am a string"
"I am a string containing a newline character\n\t and a tab."

Strings may span multiple lines.

"I am a string containing a newline character
and a tab."

Strings can contain special characters using \{___}. Brackets can contain named characters or Unicode literals.

"Jack \{heart}s Jill" .# => "Jack s Jill"
"sin(\{theta}) = \{alpha}" .# => "sin() = "
"\{x00BF}Que tal?" .# => "¿Que tal?"

Strings are essentially a list of characters, so any list operator that can be used on lists can be can be used on strings.

"Hello " "world!" K .# => "Hello world!"
['s't'r'i'n'g] .# => "string"
"abcde".[2] .# => 'c'

1.8.1 String Interpolation

Use the $ character within a string to evaluate the variable or statement following it. If used with a variable name,
evaluate the variable name.

aya> 5:num;
aya> "I have $num apples"
"I have 5 apples"

If used with a group (), evaluate the group.

aya> "I have $(1 num +) bananas"
"I have 6 bananas"

If there are more than one item left on the stack, aya dumps the stack inside square brackets.

aya> 123:playera;
aya> 116:playerb;
aya> "The final scores are $(playera playerb)!"
"The final scores are [123 116]!"

1.8. Strings 37

./syntax_overview.html#strings

Aya, Release 0.3

If used after a \, keep the $ char.

aya> 10:dollars;
aya> "I have \$$dollars."
"I have $10"

If used with anything else, keep the $.

aya> "Each apple is worth $0.50"
"Each apple is worth $0.50"

Here are some additional examples:

aya> 5:num;
aya> 0.75:price;
aya> "I sold $num apples for \$$price each and I made \$$(num price*)"
"I sold 5 apples for $0.75 each and I made $3.75"

aya> "Inner $(\"strings\")"
"Inner strings"

aya> "Inner $(\"$a\") interpolation requires backslashes"
"Inner 1 interpolation requires backslashes"

aya> "Inner-$(\"$(\\\"inner\\\")\") interpolation can be messy"
"Inner-inner interpolation can be messy"

1.8.2 Long String Literals

Long strings are entered using triple quotes. No characters are escaped within long strings. In the following code. . .

"""<div id="my_div">
<h1>\n: the newline character</h1>
<p>\{alpha}<p>
<p>$interpolate</p>

</div>"""

. . . no escape characters are parsed in the output:

"<div id="my_div">
<h1>\n: the newline character</h1>
<p>\{alpha}<p>
<p>$interpolate</p>

</div>"

38 Chapter 1. Contents

Aya, Release 0.3

1.9 Blocks

Blocks contain expressions. They can be used to define functions, map instructions to lists, etc. They are denoted using
curly braces {}.

{20 50 +}

They can be evaluated by using the ~ operator.

{20 50 +}~ .# => 70

When blocks are evaluated, their contents are dumped to the stack and the stack continues as normal. This is what
happens when we call functions as well.

100 10+ {1 + 2 *}~
110 {1 + 2 *}~

110 1 + 2 *
111 2 *

222

1.9.1 Block Header

A comma (,) is used to specify that the block has a header. Anything before the comma is considered the header and
everything after is considered the instructions. A block header is used to introduce local variables to the block in the
form of arguments or local declarations. Arguments and declarations are separated by a colon (:). Arguments must go
on the left hand side of the colon and local declarations on the right.

{<arg1> <arg2> ... <argN> : <local dec 1> ... <local dec M>, <block body>}

If no colon is included in the header, all variable names will be used as arguments.

{<arg1> <arg2> ... <argN>, <blovk body>}

If a colon is the first token in a block header, all variable names are considered local declarations.

{: <local dec 1> <local dec 2> ... <local dec M>, <block body>}

Finally, if nothing is included in the block header, the block will be parsed as a dictionary.

{, <dict body>}

1.9.2 Arguments

Arguments work like parameters in programming languages with anonymous/lambda functions. Before the block is
evaluated, its arguments are popped from the stack and assigned as local variables for the block.

aya> 4 {a, a2*}~
8

Arguments are popped in the order they are written.

1.9. Blocks 39

Aya, Release 0.3

aya> 8 4 {a b, [a b] R}~
[8 7 6 5 4]

Arguments are local variables.

aya> 2:n 3{n, n2^}~ n
2 9.0 2

1.9.3 Argument Type Assertions

Arguments may have type assertions. Write a variable name followed by a symbol corresponding to the type.

1 2 {a::num b::num, a b +}~ .# => 3
"1" 2 {a::num b::num, a b +}~ .# TYPE ERROR: Type error at ({ARGS}):

Expected (::num)
Recieved ("1")

If a user defined type defines a type variable as a symbol. The symbol will be used for type assertions.

{,
::vec :type;

... define vec variables and functions ...
}:vec;

{v::vec,
v :P

}:printvec;

The type checker will use the .type variable:

aya> 1 2 vec! :v
<1,2>
aya> v printvec
<1,2>
aya> 3 printvec
TYPE ERROR: Type error at ({ARGS}):

Expected (::vec)
Recieved (3)

1.9.4 Local Declarations

Local declarations introduce a local scope for that variable. Scope is discussed in greater detail in the Variable Scope
section of this document. Local declarations can not have type declarations.

aya> "A":a
"A"
aya> a println {:a, "B":a; a println}~ a println
A
B
A

40 Chapter 1. Contents

Aya, Release 0.3

All local declarations default to the value 0.

{: a, "a is $a" :P } ~

Change the default value for a local variable using an initializer.

aya> {: a(10) b c("hello") d([1 2]), [a b c d] } ~
[10 0 "hello" [1 2]]

Variables are initialized before run time and therefore can not be variables.

aya> 99 :l
99

aya> {: a(l), a} ~
SYNTAX ERROR: Block header: Local Variables Initializer: Must contain only const values

aya> .# define a as a function which evaluates to l
aya> {: a({l}), a} ~
99

aya> .# define a as a list which evaluates to l
aya> {: a([l]), a} ~
[99]

1.9.5 Keyword Arguments

Aya provides a way to use keyword arguments using dictionaries and local declarations. Consider the following func-
tion:

{kwargs::dict : filename("") header dtype(::num),
kwargs .W

"filename=\"$filename\", header=$header, dtype=$dtype" :P
}:fn;

The function fn contains 1 argument kwargs (the name can be anything) and three local declarations. The operator
.W will export variables from the kwargs dict only if they are defined in the local scope. This means that any variables
defined in kwargs will overwrite the initialized local variables. Every variable not given by kwargs dict will remain
in its default state.

aya> {, "sales.csv":filename 1:header} fn
filename="sales.csv", header=1, dtype=::num

aya> .# The variable `useless` does not exist in the local scope of `fn`
aya> .# and will therefore be ignored
aya> {, "colors.csv":filename "blah":useless} fn
filename="colors.csv", header=0, dtype=::num

aya> {, "names.csv":filename ::str:dtype} fn
filename="names.csv", header=0, dtype=::str

(continues on next page)

1.9. Blocks 41

Aya, Release 0.3

(continued from previous page)

aya> {, } fn
filename="", header=0, dtype=::num

1.10 Functions

We now have the basic building blocks for defining functions: variable assignment and blocks. A function is simply
a variable that is bound to a block. When the variable is called, the interpreted dumps the contents of the block onto
the instruction stack and then continues evaluating. Functions can take advantage of anything that a normal block can
including arguments and argument types.

Here are a few examples of function definitions: swapcase takes a character and swaps its case.

aya> {c::char, c!}:swapcase;
aya> 'q swapcase
'Q'

Below is the definition of the standard library function roll, This function will move the last element of a list to the
front.

aya> {B\.V}:roll;
aya> [1 2 3 4] roll;
[4 1 2 3]

When used with block arguments, functions can be written in very readable ways. The following function swapitems
takes a list and two indices and swaps the respective elements. It uses block arguments and type assertions.

{listL i::num j::num : tmp,
list i I : tmp;
list j I list i D
tmp list j D
list

}:swapitems;

aya> [1 2 3 4 5] 0 3 swapitems
[4 2 3 1 5]

To see more examples check out the standard library located at /base/std.aya

1.11 Dictionaries

A dictionary is a set of key-value pairs. The keys must always be valid variable names. A dictionary literal is created
using a block with an empty header. The block is evaluated and all variables are in assigned in the scope of the
dictionary.

{,
<dictionary body>

}

Below is a simple dictionary example.

42 Chapter 1. Contents

Aya, Release 0.3

.# Define a simple dictionary
{,
1:one;
2:two;
3:three;

}:numbers;

Empty dictionaries are created if the block and the header are empty.

aya> {,}
{,
}

1.11.1 Accessing Values

Access variables are used to access variables in dictionaries and user types. To create an access variables, use a dot
before the variable name.

aya> numbers.two
2

.# whitespace is optional
aya> numbers .one
1

1.11.2 Assigning / Creating Values

Dictionary values can be assigned using the .: operator.

aya> {, 1:a 2:b} :d
{,
1:a;
2:b;

}
aya> 4 d.:a
{,
4:a;
2:b;

}
aya> 9 d.:c
{,
4:a;
2:b;
9:c;

}

They may also be assigned using the following syntax:

item dict.:[key]

where key is a string or a symbol.

1.11. Dictionaries 43

Aya, Release 0.3

For example:

aya> {, 0:x } :dict;
aya> 1 dict.:[::y]
aya> dict
{,
0:x;
1:y;

}

aya> 1 dict.:["y"]
aya> dict
{,
0:x;
1:y;

}

Loop over k/v pairs in a dict using the :# operator

aya> dict :# {k v, v 1 + dict.:[k]}
aya> dict
{,
1:x;
2:y;

}

1.11.3 Metatables

In Aya, metatables can be used to define custom types with separate functionality and moderate operator overloading.
User types are represented internally as an array of objects paired with a dictionary. Any dictionary can contain a
read-only set of variables as a metatable. Metatables typically contain functions that act on the dictionaries values. For
example, if we define the metatable

{, {self, self.x self.y +}:sum; {}:donothing; } :meta;

and the dictionary

{, 1:x 2:y {}:none } :dict;

we can set the metatable using the MO operator like so

aya> meta meta.:__meta__
{,
1:x;
2:y;
{}:none;

}

We can see that the dict still has the values x and y but it also now has a hidden entry for the key sum in its metatable.
When we call the metatable variable, the dictionary will be left on the stack and the metatable value will be evaluated.

aya> dict.sum
3

(continues on next page)

44 Chapter 1. Contents

Aya, Release 0.3

(continued from previous page)

aya> dict.donothing
{,
1:x;
2:y;
{}:none;

}

1.12 Variables

SeeSyntax Overview: Variables

Variables may only contain lower case letters and underscores. They are assigned using the colon (:) operator. The
value is left on the stack after the assignment has occurred.

aya> 1 :a
1
aya> 3:b a +
4

1.12.1 Variable Scope

A new scope is introduced if a block contains any variable declaration in its header. When a variable assignment occurs,
the interpreter will walk outward until a reference to that variable appears. If it does not appear in any of the scopes
before the global scope, a new reference will be created there. In order to ensure a variable is using local scope, the
variable name must be included in the block header. If a block does not contain a header, a new scope will not be
introduced. These concepts are best demonstrated by example.

Let us introduce the variables a and b:

"A":a; "B":b;

When blocks have arguments, a scope is introduced for that variable. Here, the number zero is assigned to b within the
scope of the block. When the block ends, the scope is destroyed and we reference the now global variable b.

aya> 0 {b, b.P}~ b.P
0B

Local variables also create local scopes for that variable. Here, we create a local scope for the variable b. a is not
included in the new scope.

aya> .# Local variable b declared in header
{:b,
0:a;
1:b;
"a = $a," .P
"b = $b\n" .P

}~
"a = $a," .P
"a = $b\n" .P

(continues on next page)

1.12. Variables 45

./syntax_overview.html#variables

Aya, Release 0.3

(continued from previous page)

a = 0,b = 1
a = 0,a = B

1.13 User-Defined Types

1.13.1 Classes

Classes are defined using the class keyword

aya> class person
aya> person
<type 'person'>

Constructor

The constructor (__init__) takes any number of optional arguments followed by a self argument. self must always
be the last argument in the list:

def person::__init__ {name age self,
name self.:name;
age self.:age;

}

Create an object with the ! operator:

aya> "Jane" 25 person! :jane;
(person 0x259984df)
aya> jane.name
"Jane"
aya> jane.age
25

Functions

Like the constructor, a member function takes self as an argument:

def person::greet {self,
"Hi it's $(self.name)"

}

It is called like any other class variable:

aya> jane.greet
"Hi it's Jane"

46 Chapter 1. Contents

Aya, Release 0.3

Print/String Overloading

__repr__ is a special function that is called when the object is printed. Overload it to change how an object is printed
to the console

def person::__repr__ {self,
"person: $(self.name)"

}

For example

aya> jane
person: Jane

__str__ is a special function that is called when the object is converted to a string

def person::__str__ {self,
self.name

}

For example

aya> jane P
"Jane"
aya> "I saw $jane the other day"
"I saw Jane the other day"

Operator Overloading

Many operators can be overloaded for user types. Type \? overloadable in the repl for a full list. Many of the
standard libraries use this feature to seamlessly integrate with the base library. For example, the matrix library uses it
for all math operators:

aya> import ::matrix
aya> [[1 2][3 4]] matrix! :m
[[1 2]
[3 4]]
aya> m 10 + 2 /
[[5.5 6]
[6.5 7]]

It is especially useful when writing libraries for code golf. The asciiart library uses it to create specialized operators
on it’s custom string type. Here is a 13 character function for creating a size N serpinski triangle:

aya> 4 "##`#"_\L{I}/
asciiart:
################
#
##
#
####
#
##

(continues on next page)

1.13. User-Defined Types 47

Aya, Release 0.3

(continued from previous page)

#
########
#
##
#
####
#
##
#

Let’s overload the increment operator (B) to increment a person’s age.

Here we modify the object directly

def person::__inc__ {self,
self.age B self.:age;

}

Gives us

aya> jane.age
25
aya> jane B
aya> jane.age

If we don’t want to modify the object but return a modified copy we could have chose to use the $ syntax to pass a copy
of the object instead:

def person::__inc__ {self$,
self.age B self.:age;
self .# Leave the copy on the stack

}

Usage

aya> jane.age
25
aya> jane B :jane_older;
aya> jane.age
25
aya> jane_older.age
26

Class Variables & Functions

To define a shared class variable, assign it to the class directly:

def person::counter 0

or

0 person.:counter;

48 Chapter 1. Contents

Aya, Release 0.3

We can then redefine our construtor to keep track of how many times we’ve called the constructor.

Note that we can access counter directly from self but we need to use __meta__ to update it to ensure we are
updating the shared variable.

def person::__init__ {name age self,
name self.:name;
age self.:age;
self.counter 1+ self.__meta__.:counter;

}

Class functions take the class as an argument:

def person::create_anon {cls,
"Anon" 20 cls!

}

They are called with the class (rather than with an instance)

aya> person.create_anon :anon
(person 0x7a1fe926)
aya> anon.name
"Anon"

Inheritance

Aya classes support single inheritance. We can use the extend operator to create a class that is derived from another
class. Here we create an employee class which extends the person class. It will simply add a job field.

Note that extend is not a keyword like class but an operator that takes the class as a symbol argument

::employee person extend;

or more generally

::derived base extend;

Our constructor calls the person constructor with name and age and then adds a job field.

def employee::__init__ {name age job self,
.# call super constructor
name age self super.__init__

.# derived-specific code
job self.:job;

}

In the example below, not that employee still calls __repr__ we defined for the person class.

aya> "Bob" 30 "salesman" employee!
person: Bob

We can overload the greet function to include the job:

1.13. User-Defined Types 49

Aya, Release 0.3

def employee::greet {self : greeting,
.# call super greet
.# must pass `self` to super
self super.greet :greeting;

.# append derived-specific greeting to output
greeting ", I'm a $(self.job)" +

}

Calling it:

aya> bob.greet
"Hi it's Bob, I'm a Salesman"

1.13.2 Structs

In Aya, structs are classes. The struct keyword simply creates a class with a few convience functions already defined.

The syntax is

struct <name> {<member1>, <member2>, ...}

For example, lets create a point struct for representing a 2d point:

struct point {x y}

The constructor is created automatically for us. It takes each member as an argument in the same order they are defined

aya> 3 4 point! :p;
aya> p.x
3
aya> p.y
4

__repr__ and __str__ functions are also automatically created:

aya> p
(3 4) point!
aya> p P
"(3 4) point!"

1.13.3 Internals

Keywords such as class, struct, and def are not actually keywords at all. They are regular aya functions defined
completely in aya code (see base/aya.aya).

Classes, structs, and object instances are simply dictionaries with special meta dictionaries. If you are interested in
seeing how these are implemented entirely in aya, read on.

Below is an example of a 2d vector “class” definition written from scratch without using any convience functions.
Member functions and overloads work the same as they do for normal classes. The only major difference is object
creation (__new__ vs __init__) and the special variables __pushself__ and __type__ at the top of the metatable.

50 Chapter 1. Contents

Aya, Release 0.3

{,

1:__pushself__;
::vec:__type__;

.# Constructor
{x y cls,
{,
x:x;
y:y;
cls:__meta__;

}
}:__new__;

.# Member functions

.# Print overload
{self,
"<$(self.x),$(self.y)>"

}:__repr__;

.# Compute vector length
{self,
self.x 2^ self.y 2^ + .^

}:len;

.# Operator overload
{other self,
other.x self.x +
other.y self.y +
vec!

}:__add__;

}:vec;

Special Metatable Variables

1:__pushself__;
::vec:__type__;

__pushself__ tells aya to push a reference of the object to the stack when calling functions on it. It effectively enables
the use of self

The symbol assigned to __type__ is used for type checking and overloading the :T (get type) and :@ (is instance)
operators.

1.13. User-Defined Types 51

Aya, Release 0.3

Constructor

{x y cls,
{,

x:x;
y:y;
cls:__meta__;

}
}:__new__;

Object construction with the ! operator is just a standard operator overload that calls __new__.

Note: For classes, __new__ creates an instance of the object (i.e. self) and then calls __init__ wich takes self as an
argument.

1.14 Metaprogramming

1.14.1 Blocks

Aya provides a basic data structure for representing code called a block. A block is a list of instructions. Internally,
every Aya program is a block.

aya> {1 1 +}
{1 1 +}

Evaluate it with the ~ operator

aya> {1 1 +} ~
2

By default, blocks assigned to variables are automatically evaluated when de-referenced. Use .` to get the block
without evaluating it.

aya> {1 1 +} :a
{1 1 +}
aya> a
2
aya> a.`
{1 1 +}

Split a block into parts using the .* operator.

aya> {3 4 *} .*
[{3} {4} {*}]

The same operator is used to join a list into a block:

aya> [{3} {4} {*}] .*
{3 4 *}

.* automatically converts data into instructions

52 Chapter 1. Contents

Aya, Release 0.3

aya> [3 4 {*}] .*
{3 4 *}

For example, make_adder is a function that takes a number N and creates a block of code that adds N to its input

aya> { {+} J .* }:make_adder
{{+} J .*}
aya> 5 make_adder :add_five
{5 +}
aya> 4 add_five
9

1.14.2 Macros

In Aya, programs are evaluated from left to right

aya> 1 2 +
3
aya> 1 2 + 4 *
12

Above, the + and * operators read data from their left. When evaluating +, everything to the left is considered data and
everything to the right is considered instructions.

1 2 + 4 *
<-- data | instructions -->

All standard operators and functions operate only on data; that is, things to their left.

A macro is a function that operates on instructions; or things to its right. Macros may also operate on data and
instructions.

For example, struct is a macro that reads two instructions: the type name and the list of member variables.

aya> struct point {x y}
<type 'point'>

if is a macro that reads 3 instructions to achieve behavior similar to if keywords from imperitive languages

aya> if (1) {"true!"} {"false!"}
"true!"

The :` operator is used to create macros. It takes 2 data arguments. A block B and an integer N. When evaluated, it
will wrap each of the next N instructions in a block (converting them to data) then wrap the whole thing in a list. Then
it will run B after the newly created block.

aya> { "data block" } 1 :` instruction
[{instruction}] "data block"
aya> {1} 2 :` 3 +
[{3} {+}] 1

1.14. Metaprogramming 53

Aya, Release 0.3

Macro Example

Lets define a macro apply that applies the instruction after it to each element of a list.

aya> ["three" "two" "one"] apply .upper
["THREE" "TWO" "ONE"]

First we use :` to capture the instruction we want to apply then use the ~ operator to unwrap the instruction list

aya> ["three" "two" "one"] { } 1 :` .upper
["three" "two" "one"] [{.upper}]
aya> ["three" "two" "one"] { ~ } 1 :` .upper
["three" "two" "one"] {.upper}

We use the map operator O to apply the block to each element of the list

aya> ["three" "two" "one"] { ~ O } 1 :` .upper
["THREE" "TWO" "ONE"]

Now we can replace .upper with the reverse operator U to reverse the strings in the list instead

aya> ["three" "two" "one"] { ~ O } 1 :` U
["eerht" "owt" "eno"]

Finally, we can remove our example data and define our macro.

aya> { { ~ O } 1 :` } :apply
{{~ O} 1 :`}

Usage:

aya> ["three" "two" "one"] apply .upper
["THREE" "TWO" "ONE"]
aya> ["three" "two" "one"] apply U
["eerht" "owt" "eno"]
aya> ["three" "two" "one"] apply .[0]
"tto"

Apply multiple instructions by wrapping them in ()

aya> ["three" "two" "one"] apply ("!" +)
["three!" "two!" "one!"]

1.15 Standard library

This section is still a work in progress
The Aya standard library consists of type definitions, mathematical functions, string and list operations, plotting tools
and even a small turtle graphics library. It also defines functions and objects for working with colors, dates, files, GUI
elements, and basic data structures such as queues, stacks, and sets. The standard library also contains a file which
defines extended ASCII operators for use when code golfing.

54 Chapter 1. Contents

Aya, Release 0.3

1.15.1 asciiart

Provides an asciiart datatype and several operator overloads for drawing complex ascii art pictures with only a few
characters.

Run length encoding:

aya> " #` # #`5#"_
asciiart:
#
#
#####

Operator overloads

aya> " #` # #`5#"_ T
asciiart:
#

##
#
##
#

aya> " #` # #`5#"_ $I
asciiart:

#
#
#####

#
#
#####

#
#
#########################

1.15.2 bitset

Provides the bitset type

aya> 8 bitset! :b
[0 0 0 0 0 0 0 0]bitset!
aya> 3 b.set
aya> 5 b.set
aya> b
[0 0 0 1 0 1 0 0]bitset!
aya> b.count
2

1.15. Standard library 55

Aya, Release 0.3

1.15.3 canvas

Graphics library for creating images and animations. See examples/canvas for more examples.

Fig. 2: Vaporwave City

Fig. 3: 3D Cube

1.15.4 color

The color library defines basic color constructors and conversions.

aya> 14 57 100 color!
(14 57 100) color!

aya> color.colors.violet :violet
(238 130 238) color!

aya> violet.hsv
[300 .45378151 .93333333]

aya> violet.hex
"ee82ee"

aya> 5 color.colors.red color.colors.blue.grad
[
(255 0 0) color!
(191 0 63) color!
(127 0 127) color!
(63 0 191) color!
(0 0 255) color!

]

56 Chapter 1. Contents

Aya, Release 0.3

1.15.5 csv

Provides functions for reading and writing CSV files

aya> "examples/data/simple.csv" csv.read
{,
[
[1 2 3]
[4 5 6]
[7 8 9]

]:data;
nil:rownames;
["A" "B" "C"]:colnames;

}

1.15.6 dataframe

The dataframe type is an interface for working with tables. CSV files can be directly imported and modified or the
data can be generated by the program itself.

aya> {, [[1 2 3][4 5 6]]:data ["x" "y" "z"]:colnames} dataframe!
x y z

0 | 1 2 3
1 | 4 5 6

aya> {, [[1 2 3][4 5 6]]:data ["x" "y" "z"]:colnames} dataframe! :df
x y z

0 | 1 2 3
1 | 4 5 6

aya> df.["x"]
[1 4]

aya> "examples/data/simple.csv" dataframe.read_csv
A B C

0 | 1 2 3
1 | 4 5 6
2 | 7 8 9

1.15.7 date

The date script provides a basic interface for the date parsing operators Mh and MH. It also provides basic date unit
addition and subtraction.

aya> date.now
May 01, 2017 12:53:25 PM

aya> date.now.year
2017

aya> date.now 2 dates.month +
(continues on next page)

1.15. Standard library 57

Aya, Release 0.3

(continued from previous page)

Jul 01, 2017 8:53:42 AM

aya> date.now 2 dates.month + .mmddyy
"07/01/17"

1.15.8 enum

The enum library defines the enum keyword which uses dictionaries and metatables to create enums.

aya> enum shape {circle triangle square}

aya> shape
shape

aya> shape :T
::enum

aya> shape.circle
shape.circle

aya> shape.circle :T
::shape

aya> shape.circle shape.circle =
1

1.15.9 golf

golf defines many short variables that are useful when golfing. It also uses the Mk operator to add additional single
character operators. In the following code, all variables ì, ¶, ¦, ¥ and r are defined in the golf script.

aya> .# Generate and print an addition table
aya> 6r_ì¶¦¥

0 1 2 3 4 5
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10

Sets default values for many variables

aya> [a b c d k l p w z ì í]
[2 3 10 1000 [] 3.14159265 -1 0 {+} {-}]

58 Chapter 1. Contents

Aya, Release 0.3

1.15.10 image

Library for reading and writing images.

aya> "images/logo.png" image.read :img
(image 300x300)
aya> img.width
300
aya> img.pixels 5 .<
[
[255 255 255]
[255 255 255]
[255 255 255]
[255 255 255]
[255 255 255]

]

1.15.11 io

Defines the file and path types

1.15.12 json

Library for reading and writing json

1.15.13 math

The math library provides many math functions

1.15.14 matrix

The matrix library provides a basic interface and operator overloads for working with matrices.

aya> 3 3 10 matrix.randint :mat
| 7 8 2 |
| 8 7 3 |
| 8 4 4 |

aya> mat [[0 1] 0] I
| 7 |
| 8 |

aya> mat [[0 1] 0] I .t
| 7 8 |

aya> mat 2 ^ 100 -
| 29 20 -54 |
| 36 25 -51 |
| 20 8 -56 |

1.15. Standard library 59

Aya, Release 0.3

1.15.15 missing

Provides the missing type for working with missing data

1.15.16 mp

Metaprogramming library

1.15.17 plot

Plotting interface. See examples/plot

1.15.18 queue

Queue data structure.

1.15.19 random

Functions for woring with random numbers.

1.15.20 set

The set script defines a set type and many operator overloads. It defines s as a prefix operator for the set constructor
allowing the syntax s[...] to create sets.

aya> s[1 2 3 2 2 1] .# == ([1 2 3 2 2 1] set!)
s[1 2 3]

aya> s[1 2 3] s[2 3 4] |
s[1 2 3 4]

aya> s[1 2 3] s[2 3 4] &
s[2 3]

aya> s[1 2 3] s[2 5] /
s[1 3]

1.15.21 shell

A shell-like interface for the aya REPL.

60 Chapter 1. Contents

Aya, Release 0.3

1.15.22 socket

Socket and socket server interface.

1.15.23 stack

Stack data structure.

1.15.24 stats

Provides several statistics functions.

1.15.25 sys

Provides functions for working with the system such as getting or changing the working directory.

1.15.26 terminal

Functions for formatting text in the terminal (bold, color, etc)

1.15.27 turtle

Turtle library. See examples/turtle

1.15.28 viewmat

Provides the viewmat function which is used to generate a heatmap visualization of a 2d array. See examples/
canvas/julia

1.16 Canvas Input

You can poll for mouse and keyboard input using these standard library instructions.

The graphics.click_events, graphics.move_events and graphics.typed_chars instructions provide you
with a list of events that occurred since the last time the instruction was called.

The graphics.pressed_buttons and graphics.pressed_keys instructions yield the currently pressed / held but-
tons and keys.

1.16. Canvas Input 61

Aya, Release 0.3

1.16.1 Mouse Events

Click Events

Lists the mouse clicks since the last time this instruction was executed.

graphics.click_events pushes a list of dictionaries with the following keys onto the stack:

• x (num) The x-coordinate the click occurred at.

• y (num) The y-coordinate the click occurred at.

• button (num) The button number the was clicked. (See Mouse Buttons)

• clicks (num) The amount of successive clicks. (Useful for detecting double-clicks)

aya> my_canvas.id :{graphics.click_events}
[{

128 :x;
256 :y;
1 :button;
3 :clicks;

}]

Pressed Buttons

Lists the currently held mouse buttons.

graphics.pressed_buttons pushes a list of currently held button-numbers onto the stack. (See Mouse Buttons)

aya> my_canvas.id :{graphics.pressed_buttons}
[1 3]

Move Events

Lists the mouse movements since the last time this instruction was executed.

graphics.move_events pushes a list of dictionaries with the following keys onto the stack:

• x (num) The x-coordinate the cursor moved to.

• y (num) The y-coordinate the cursor moved to.

aya> my_canvas.id :{graphics.move_events}
[{

128 :x;
256 :y;

} {
130 :x;
260 :y;

} {
132 :x;
264 :y;

}]

62 Chapter 1. Contents

Aya, Release 0.3

1.16.2 Keyboard Events

Pressed Keys

Lists the currently held keyboard keys.

graphics.pressed_keys pushes a list of dictionaries with the following keys onto the stack:

• key_name (str) The name of the pressed key. (See Keyboard Keys)

• keycode (num) An integer representation of the key.

• location_name (str) The name of the location of the key. (See Keyboard Locations)

• location (num) An integer representation of the location.

aya> my_canvas.id :{graphics.pressed_keys}
[{

"A" :key_name;
65 :keycode;
"STANDARD" :location_name;
1 :location;

} {
"CONTROL" :key_name;
17 :keycode;
"LEFT" :location_name;
2 :location;

}]

Typed Characters

Lists the Unicode characters that were typed since the last time this instruction was executed.

graphics.typed_chars pushes a string of typed characters onto the stack.

aya> my_canvas.id :{graphics.typed_chars}
"Hello, World!"

1.16.3 Overview of possible values

Mouse Buttons

Number Button
1 left
2 middle
3 right
4 back
5 forward

If your mouse has more than 5 buttons, you may see larger numbers as well.

1.16. Canvas Input 63

Aya, Release 0.3

Keyboard Keys

Keycode Key Name
0 UNDEFINED
3 CANCEL
8 BACK_SPACE
9 TAB
10 ENTER
12 CLEAR
16 SHIFT
17 CONTROL
18 ALT
19 PAUSE
20 CAPS_LOCK
21 KANA
24 FINAL
25 KANJI
27 ESCAPE
28 CONVERT
29 NONCONVERT
30 ACCEPT
31 MODECHANGE
32 SPACE
33 PAGE_UP
34 PAGE_DOWN
35 END
36 HOME
37 LEFT
38 UP
39 RIGHT
40 DOWN
44 COMMA
45 MINUS
46 PERIOD
47 SLASH
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
59 SEMICOLON
61 EQUALS
65 A
66 B
67 C

continues on next page

64 Chapter 1. Contents

Aya, Release 0.3

Table 2 – continued from previous page
Keycode Key Name
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 OPEN_BRACKET
92 BACK_SLASH
93 CLOSE_BRACKET
96 NUMPAD0
97 NUMPAD1
98 NUMPAD2
99 NUMPAD3
100 NUMPAD4
101 NUMPAD5
102 NUMPAD6
103 NUMPAD7
104 NUMPAD8
105 NUMPAD9
106 MULTIPLY
107 ADD
108 SEPARATOR
109 SUBTRACT
110 DECIMAL
111 DIVIDE
112 F1
113 F2
114 F3
115 F4
116 F5
117 F6
118 F7

continues on next page

1.16. Canvas Input 65

Aya, Release 0.3

Table 2 – continued from previous page
Keycode Key Name
119 F8
120 F9
121 F10
122 F11
123 F12
127 DELETE
128 DEAD_GRAVE
129 DEAD_ACUTE
130 DEAD_CIRCUMFLEX
131 DEAD_TILDE
132 DEAD_MACRON
133 DEAD_BREVE
134 DEAD_ABOVEDOT
135 DEAD_DIAERESIS
136 DEAD_ABOVERING
137 DEAD_DOUBLEACUTE
138 DEAD_CARON
139 DEAD_CEDILLA
140 DEAD_OGONEK
141 DEAD_IOTA
142 DEAD_VOICED_SOUND
143 DEAD_SEMIVOICED_SOUND
144 NUM_LOCK
145 SCROLL_LOCK
150 AMPERSAND
151 ASTERISK
152 QUOTEDBL
153 LESS
154 PRINTSCREEN
155 INSERT
156 HELP
157 META
160 GREATER
161 BRACELEFT
162 BRACERIGHT
192 BACK_QUOTE
222 QUOTE
224 KP_UP
225 KP_DOWN
226 KP_LEFT
227 KP_RIGHT
240 ALPHANUMERIC
241 KATAKANA
242 HIRAGANA
243 FULL_WIDTH
244 HALF_WIDTH
245 ROMAN_CHARACTERS
256 ALL_CANDIDATES
257 PREVIOUS_CANDIDATE

continues on next page

66 Chapter 1. Contents

Aya, Release 0.3

Table 2 – continued from previous page
Keycode Key Name
258 CODE_INPUT
259 JAPANESE_KATAKANA
260 JAPANESE_HIRAGANA
261 JAPANESE_ROMAN
262 KANA_LOCK
263 INPUT_METHOD_ON_OFF
512 AT
513 COLON
514 CIRCUMFLEX
515 DOLLAR
516 EURO_SIGN
517 EXCLAMATION_MARK
518 INVERTED_EXCLAMATION_MARK
519 LEFT_PARENTHESIS
520 NUMBER_SIGN
521 PLUS
522 RIGHT_PARENTHESIS
523 UNDERSCORE
524 WINDOWS
525 CONTEXT_MENU
61440 F13
61441 F14
61442 F15
61443 F16
61444 F17
61445 F18
61446 F19
61447 F20
61448 F21
61449 F22
61450 F23
61451 F24
65312 COMPOSE
65368 BEGIN
65406 ALT_GRAPH
65480 STOP
65481 AGAIN
65482 PROPS
65483 UNDO
65485 COPY
65487 PASTE
65488 FIND
65489 CUT

For more information, check the KeyEvent javadoc

1.16. Canvas Input 67

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/event/KeyEvent.html

Aya, Release 0.3

Keyboard Locations

Location Code Location Name
0 UNKNOWN
1 STANDARD
2 LEFT
3 RIGHT
4 NUMPAD

For more information, check the KeyEvent javadoc

1.17 Debugging

Aya has built-in support for setting breakpoints using the bp command. For example:

{a b : c,
a b + :c;
[a b]
bp
c J

}:fn;

Calling this function with pause execution at the location of bp and open a shell for inspection.

aya> 1 2 fn
Execution paused, enter '.' to continue
Stack: [1 2]
Next instructions: c J

aya (debug)> a
1

aya (debug)> c
3

aya (debug)> .
[1 2 3]

Setting __aya__.ignore_breakpoints to 1 will disable breakpoints in the session and setting it to 0 will enable
them. It is set to 0 by default.

aya> 1 __aya__.:ignore_breakpoints;

aya> 1 2 fn
[1 2 3]

aya> 0 __aya__.:ignore_breakpoints;

aya> 1 2 fn
Execution paused, enter '.' to continue
...

68 Chapter 1. Contents

https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/event/KeyEvent.html

Aya, Release 0.3

Aya has its documentation hosted on Read the Docs.

1.17. Debugging 69

	Contents
	Tour of Aya
	Basic language features

	Running / Installation
	Running Examples
	Command Line Arguments
	System Install

	Syntax Overview
	Execution
	Comments
	Line Comments
	Block Comments

	Variables
	Special Variables

	Numbers
	Integers & Decimals
	Negative Numbers
	Big Numbers
	Hexadecimal Literals
	Binary Literals
	Scientific/“e” Notation
	Fractional Numbers
	PI Times
	Root Constants
	Complex numbers
	Number Constants

	Characters
	Standard Characters
	Hex Character Literals
	Named Character Literals

	Strings
	Standard String Literals
	Special Characters in Strings
	String Interpolation
	Long String Literals

	Symbols
	Lists
	List Literals
	List Stack Captures
	List Comprehensions
	Indexing
	Get a value from a list
	Set a value at an index in a list

	Dictionaries
	Dictionary Literals
	Getting Values
	Setting Values

	Blocks
	Basic Blocks
	Short Block Notation
	Block Headers
	Arguments
	Local Variables

	Operators
	Standard Operators
	“Dot” Operators
	Exceptions
	Dereference Without Executing (.<grave>)

	“Colon” Operators
	Exceptions

	“Misc” Operators
	Non-Standard “Infix” Stack Operators
	List Map (:#)
	List Map Shorthand (#)
	Capture Instructions (:`)

	Extension Operators

	User Types
	Struct
	Defining A Struct
	Create Instance Of Struct
	Accessing Values of a Struct
	Struct Member Functions

	Golf Utilities
	Golf Constants

	Operators
	Type Abbreviations
	Operator Table

	Numbers
	Special Number Literals
	Misc. Number Literals
	Scientific Notation
	PI Times
	Root Constants

	Lists
	Essential List Operations
	List Indexing
	Essential List Operators
	Extend (K)
	Join (J)
	Reshape (L)
	Flatten (.F)
	Pop from front / back
	Append to front / back

	Generators
	Range (R)

	List comprehension
	The Broadcast Operator

	Characters
	Special Characters
	Hex character literals
	Named Characters

	Strings
	String Interpolation
	Long String Literals

	Blocks
	Block Header
	Arguments
	Argument Type Assertions
	Local Declarations
	Keyword Arguments

	Functions
	Dictionaries
	Accessing Values
	Assigning / Creating Values
	Metatables

	Variables
	Variable Scope

	User-Defined Types
	Classes
	Constructor
	Functions
	Print/String Overloading
	Operator Overloading
	Class Variables & Functions
	Inheritance

	Structs
	Internals
	Special Metatable Variables
	Constructor

	Metaprogramming
	Blocks
	Macros
	Macro Example

	Standard library
	asciiart
	bitset
	canvas
	color
	csv
	dataframe
	date
	enum
	golf
	image
	io
	json
	math
	matrix
	missing
	mp
	plot
	queue
	random
	set
	shell
	socket
	stack
	stats
	sys
	terminal
	turtle
	viewmat

	Canvas Input
	Mouse Events
	Click Events
	Pressed Buttons
	Move Events

	Keyboard Events
	Pressed Keys
	Typed Characters

	Overview of possible values
	Mouse Buttons
	Keyboard Keys
	Keyboard Locations

	Debugging

