

Welcome to Aya’s documentation!

Aya is a terse stack based programming language originally intended for code golf and programming puzzles. The original design was heavily inspired by CJam and GolfScript. Currently, Aya is much more than a golfing language as it supports user-defined types, key-value pair dictionaries, natural variable scoping rules, and many other things which allow for more complex programs and data structures than other stack based languages.

Aya comes with a standard library written entirely in Aya code. The standard library features types such as matrices, sets, dates, colors and more. It also features hundreds of functions for working working on numerical computations, strings, plotting and file I/O. It even features a basic turtle library for creating drawings in the plot window.

Aya also features a minimal GUI that interfaces with Aya’s stdin and stdout. The GUI features plotting, tab-completion for special characters, and an interactive way to search QuickSearch help data.

Check out the Tour of Aya section for further information.

Note

This project is under active development.

Contents

	Tour of Aya
	Basic language features

	Running / Installation
	Running Examples

	Command Line Arguments

	System Install

	Syntax Overview
	Execution

	Comments
	Line Comments

	Block Comments

	Variables
	Special Variables

	Numbers
	Integers & Decimals

	Negative Numbers

	Big Numbers

	Hexadecimal Literals

	Binary Literals

	Scientific/“e” Notation

	Fractional Numbers

	PI Times

	Root Constants

	Complex numbers

	Number Constants

	Characters
	Standard Characters

	Hex Character Literals

	Named Character Literals

	Strings
	Standard String Literals

	Special Characters in Strings

	String Interpolation

	Long String Literals

	Symbols

	Lists
	List Literals

	List Stack Captures

	List Comprehensions

	Indexing
	Get a value from a list

	Set a value at an index in a list

	Dictionaries
	Dictionary Literals

	Getting Values

	Setting Values

	Blocks
	Basic Blocks

	Short Block Notation

	Block Headers
	Arguments

	Local Variables

	Operators
	Standard Operators

	“Dot” Operators
	Exceptions

	Dereference Without Executing (.<grave>)

	“Colon” Operators
	Exceptions

	“Misc” Operators

	Non-Standard “Infix” Stack Operators
	List Map (:#)

	List Map Shorthand (#)

	Capture Instructions (:`)

	Extension Operators

	User Types
	Struct
	Defining A Struct

	Create Instance Of Struct

	Accessing Values of a Struct

	Struct Member Functions

	Golf Utilities
	Golf Constants

	Operators
	Type Abbreviations

	Operator Table

	Numbers
	Special Number Literals

	Misc. Number Literals
	Scientific Notation

	PI Times

	Root Constants

	Lists
	Essential List Operations
	List Indexing

	Essential List Operators
	Extend (K)

	Join (J)

	Reshape (L)

	Flatten (.F)

	Pop from front / back

	Append to front / back

	Generators
	Range (R)

	List comprehension

	The Broadcast Operator

	Characters
	Special Characters
	Hex character literals

	Named Characters

	Strings
	String Interpolation

	Long String Literals

	Blocks
	Block Header

	Arguments

	Argument Type Assertions

	Local Declarations

	Keyword Arguments

	Functions

	Dictionaries
	Accessing Values

	Assigning / Creating Values

	Metatables

	Variables
	Variable Scope

	User-Defined Types
	Classes
	Constructor

	Functions

	Print/String Overloading

	Operator Overloading

	Class Variables & Functions

	Inheritance

	Structs

	Internals
	Special Metatable Variables

	Constructor

	Metaprogramming
	Blocks

	Macros
	Macro Example

	Standard library
	asciiart

	bitset

	canvas

	color

	csv

	dataframe

	date

	enum

	golf

	image

	io

	json

	math

	matrix

	missing

	mp

	plot

	queue

	random

	set

	shell

	socket

	stack

	stats

	sys

	terminal

	turtle

	viewmat

	Canvas Input
	Mouse Events
	Click Events

	Pressed Buttons

	Move Events

	Keyboard Events
	Pressed Keys

	Typed Characters

	Overview of possible values
	Mouse Buttons

	Keyboard Keys

	Keyboard Locations

	Debugging

Aya has its documentation hosted on Read the Docs.

Footnotes

Tour of Aya

Basic language features

Aya is a stack based language.

aya> 1 1 +
2
aya> .# This is a line comment
aya> 1 2 + 10 * 3 / 10 -
0

Generally, most symbols that are not a lowercase letter are an operator
(including uppercase letters). Extended operators come in the form
.*, M*, :*, where * is any character. Aya has many
cool operators. For example:

	Levenshtein distance (^)

aya> "kitten" "sitting" ^
3

	Create range (R) and reshape (L)

aya> 9 R
[1 2 3 4 5 6 7 8 9]
aya> 9 R [3 3] L
[[1 2 3] [4 5 6] [7 8 9]]

	List primes up to N (Mp)

aya> 30 Mp
[2 3 5 7 11 13 17 19 23 29]

	Split string using regex (|)

aya> "cat,dog, chicken ,pig" "\\W*,\\W*" |
["cat" "dog" "chicken" "pig"]

	The Apply (#) operator is special in that it is parsed as an
infix operator which can take another operator (or block) on its
right (in this case length (E)) and apply to each item in the
list

aya> 9 R [3 3] L #E
[3 3 3]
aya> 9 R [3 3] L #{E 1 +}
[4 4 4]

Many operators are broadcasted automatically. For example: the square
root (.^), addition (+), multiplication (*), and factorial
(M!) operators. Aya also supports complex numbers (:-64i),
fractional numbers (:1r2 is 1/2), and extended precision numbers
(:100x).

aya> [4 16 :-64i] .^
[2 4 :0i8]
aya> [1 2 3] :1r2 +
[:3r2 :5r2 :7r2]
aya> [1 2 3] [10 20 30] *
[10 40 90]
aya> [10 100 :100z] M!
[10 100 :100z] M!
[3628800 0 :93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000z]

Lowercase letters and underscores are used for variables. The colon
(:) operator is used for assignment. Like the apply operator
(#), it is one of the few “infix” operators.

aya> .# Objects are left on the stack after assignment
aya> "Hello" :first
"Hello"
aya> .# The ; operator pops and disgards the top of the stack
aya> "world!" :second ;

As seen above, almost everything else, including all uppercase letters,
is an operator. The :P operator will print the item on the top of
the stack to stdout.

aya> first " " + second + :P
"Hello world!"

Aya has many types of objects. The :T operator is used to get the
type. It returns a Symbol (::symbol_name)

aya> aya> 1 :T
::num
aya> [1 2 3] :T
::list
aya> [1 2 3] :T :T
::sym
aya> [1 [1 2 3] "hello" 'c {, 1:x } {2+} ::red] #:T
[::num ::list ::str ::char ::dict ::block ::sym]

You can create your own types

aya> struct point {x y}
<type 'point'>
aya> 1 2 point! :p
(1 2) point!
aya> p :T
::point

Aya supports string interpolation.

aya> "$first from Aya! 1 + 1 is $(1 1 +)"
"Hello from Aya. 1 + 1 is 2"

Blocks ({...}) are first class objects. They can be evaluated with
the eval (~) operator.

aya> 1 {1 +}
1 {1 +}
aya> 1 {1 +} ~
2

When a block is assigned to a variable, it will be automatically
evaluated when the variable is de-referenced. This allows the creation
of functions.

aya> {2*}:double
{2 *}
aya> 4 double
8

Blocks may have arguments and local variables. In the example below,
a, b, and c are arguments and x and y are local
variables.

aya> {a b c : x y,
 a 2 * :x; .# local
 b 3 * :y; .# local

 [a b c x y] .# return a list with vars inside
 }:myfun;

The following will call myfun and assign 1 to a, 2 to b, and
3 to c within the scope of the function.

aya> 1 2 3 myfun
[2 2 3 2 6 8]
aya> .# a b c x y are no longer in scope
aya> a
ERROR: Variable a not found
aya> x
ERROR: Variable a not found

Block headers may include type assertions and local variable
initializers. By default all local variables are initialized to 0
(see y in the example below).

aya> {a::num b::str : x(10) y z("hello"),
 [a b x y z]
 }:myfun;
aya> 1 "cats" myfun
[1 "cats" 10 0 "hello"]
aya> "dogs" "cats" myfun
TYPE ERROR: {ARGS}
 Expected: ::num
 Received: "dogs"

Aya also supports dictionaries. {,} creates an empty dictionary.
. is used for dictionary access and .: is used for assignment.

aya> {,} :d
{,
}
aya> 3 d.:x
{,
 3:x;
}
aya> d.x
3
aya> .# Keys can also be assigned in the literal itself
aya> {, 3:x; }
{,
 3:x;
}

Aya also supports operator overloading for many operators. Type
\? overloadable in the Aya interpreter to get a list of all
overloadable operators.

aya> struct point {x y}
aya> def point::__add__ {other self,
 other.x self.x +
 other.y self.y +
 self!
 }
aya> 3 4 point! 5 6 point! +
(8 10) point!

Aya has a growing standard library including:

	2d Matrix Object

	Dataframes

	JSON, CSV reading/writing

	Image reading/writing

	Sockets

	2d graphics

	Plotting

	Math & statistics

	And more (see the standard library section)

The Aya core language supports many other cool things such as
closures, built-in fraction and arbitrary precision numbers,
macro-like functions (the ``struct`` keyword above is defined
completely in aya!), exception handling, built in plotting and
GUI dialogs, list comprehension, and more!

Footnotes

Running / Installation

Aya is written in java. Please ensure you have the latest version of
java on your system.

Download the latest release from the releases
page[#1].

Once downloaded, simply double click aya.jar to run the aya GUI.

If your system does not support double clicking a jar to run it, you may
optionally run it using the following command:

java -jar aya.jar

NOTE: aya.jar must be in the same directory as the rest of the
files included in the download.

Running Examples

There are many example scripts in the examples/ directory. To run an
example, type its name followed by the example command:

aya> "nth_fib" example
The first 10 fib numbers are [1 1 2 3 5 8 13 21 34 55]

Some examples are in subfolders such as canvas, turtle, or
plot. Run them using subfolder/example_name:

aya> "canvas/mandelbrot" example

[image: img/mandelbrot_example.png]

img/mandelbrot_example.png

Command Line Arguments

All arguments are optional.

	The first argument is the directory to point aya at when running.

	If the second argument is -i, run the aya repl directly in the
terminal.

	All the following arguments are scripts to run

$ ls my_scripts/aya_scripts/
hello.aya
$ rlwrap java -jar ~/git/aya/aya.jar my_scripts/aya_scripts/ -i
aya> "hello.aya" G~
Hello world!

System Install

This step is only needed if you would like to add aya to your systems
path. Currently only supports OSX/Linux

Aya supports running scripts directly from the command line. For
example:

$ cat hello.aya
#!/usr/bin/env aya
"Hello world!" :P

$ chmod +x hello.aya

$./hello.aya
Hello world!

To enable this, add aya/runnable/linux to your path:

For example, you can add this line to your bashrc:

PATH="$PATH:/<path_to_aya>/aya/runnable/linux"

Footnotes

[#1]
https://github.com/aya-lang/aya/releases

Syntax Overview

Execution

Aya is a stack based language. Execution flows from left to right

aya> 1 2 +
3
aya> 1 2 + 4 *
12
aya> 1 2 + 4 * 3 /
4

Comments

Line Comments

Line comments begin with .#

aya> aya> .# comment
aya> 1 .# comment
1
aya> .#leading space optional

Block Comments

Block comments start with .{ and end with .}

.{ This is a
 block comment! .}

.{
 Also a block comment
.}

aya> .{ block .{ comments cannot be .} nested .}
SYNTAX ERROR: .} is not a valid operator

Variables

Use :varname to assign a variable. Use the plain variable name to
access

aya> 1 :x
1
aya> x
1

Single characters are supported

aya> 1 :α
1
aya> α
1

Any string of lowercase letters and underscores can be used as a
variable.

aya> 1 :this_is_a_valid_variable
1

Any string of characters can be used as a variable if the literal is
quoted. They cannot be accessed directly. These types of variables are
mostly useful for dictionaries.

aya> 1 :"Quoted Variable!"
1
aya> "Quoted Variable!" :S~
1

Numbers and uppercase letters cannot be used for variables

aya> 5 :MyVar0
Unexpected empty stack while executing instruction: :M
 in :M .. y V ar 0}

Special Variables

Double leading and trailing underscores are used for special variables

See operator overloading and metatables for examples

Numbers

Main Page:Numbers

Integers & Decimals

aya> 1
1
aya> 1.5
1.5
aya> .5
.5

Negative Numbers

- is parsed as an operator unless immediately followed by a number

aya> 1 2 - 3
-1 3
aya> 1 2 -3
1 2 -3

: can also be used to specify a negative number

aya> 1 2 :3
1 2 -3

Big Numbers

Arbitrary precision numbers have the form :Nz

aya> :123456789012345678901234567890z
:123456789012345678901234567890z
aya> :3.141592653589793238462643383279502884197169399z
:3.141592653589793238462643383279502884197169399z

Hexadecimal Literals

Hexadecimal literals have the form :0xN

aya> :0xfad
4013

If the hexadecimal does not fit in a standard integer, it will
automatically be promoted to a big number.

aya> :0xdeadbeef
:3735928559z

Binary Literals

Binary literals have the form :0bN

aya> :0b1011
11

If the literal does not fit in a standard integer, it will automatically
be promoted to a big number.

aya> :0b1011101010101001010101001010101010001011
:801704815243z

Scientific/“e” Notation

Number literals of the form :NeM are evaluated to the literal number
N * 10^M.

aya> :4e3
4000
aya> :2.45e12
2450000000000
aya> :1.1e-3
.0011

Fractional Numbers

Fractional literals have the form :NrM

aya> :1r2
:1r2
aya> :3r
:3r1
aya> :-1r4
:-1r4

PI Times

Number literals of the form :NpM are evaluated to the literal number
(N * PI)^M. If no M is provided, use the value 1.

aya> :1p2
9.8696044
aya> :1p
3.14159265
aya> :3p2
88.82643961

Root Constants

Number literals of the form :NqM are evaluated to the literal number
N^(1/M). The default value of M is 2.

aya> :2q
1.41421356
aya> :9q
3
aya> :27q3
3

Complex numbers

Complex numbers are built in. :NiM creates the complex number
N + Mi. Most mathematical operations are supported

aya> :-1i0
:-1i0
aya> :-1i0 .^
:0i1
aya> :3i4 Ms
:3.85373804i-27.01681326
aya> :3i4 Mi .# imag part
4
aya> :3i4 Md .# real part
3

Number Constants

constants follow the format :Nc

	number

	value

	:0c

	pi

	:1c

	e

	:2c

	double max

	:3c

	double min

	:4c

	nan

	:5c

	inf

	:6c

	-inf

	:7c

	int max

	:8c

	int min

	:9c

	char max

Characters

Main Page:Characters & Strings

Standard Characters

Characters are written with a single single quote to the left of the
character:

aya> 'a
'a
aya> ' .# space character
'
aya> '' .# single quote character
''
aya> 'ÿ .# supports unicode
'ÿ

Hex Character Literals

Hex literal characters are written using a '\x___' and require
closing quotes.

aya> '\xff'
'ÿ
aya> '\x00a1'
'¡

Named Character Literals

Many characters have names. All names consist only of lowercase
alphabetical characters. Use Mk operator to add new named
characters.

'\n' .# => <newline>
'\t' .# => <tab>
'\alpha' .# => 'α'
'\pi' .# => 'π'

Strings

Main Page:Characters & Strings

Standard String Literals

String literals are written with double quotes ("):

aya> "Hello, world!"
"Hello, world!"

Use \\ to escape to double quotes. (string printing in the REPL will
still display the escape character)

aya> "escape: \" cool"
"escape: \" cool"
aya> "escape: \" cool" println
escape: " cool

Strings may span multiple lines.

"I am a string containing a newline character
 and a tab."

Special Characters in Strings

Strings can contain special characters using \{___}. Brackets can
contain named characters or Unicode literals.

"sin(\{theta}) = \{alpha}" .# => "sin(θ) = α"
"\{x00BF}Que tal?" .# => "¿Que tal?"

String Interpolation

Use $ for string interpolation

aya> 10 :a;
aya> "a is $a"
"a is 10"

Use $(...) for expressions

aya> "a plus two is $(a 2 +)"
"a plus two is 12"

Use \ to keep the $ char

aya> 10:dollars;
aya> "I have \$$dollars."
"I have $10"

If used with anything else, keep the $

aya> "Each apple is worth $0.50"
"Each apple is worth $0.50"

Long String Literals

Use triple quotes for long string literals.

"""This is
a long string
literal"""

No escape characters or string interpolation is processed

aya> """This is a long string literal $foo \{theta}"""
"This is a long string literal $foo \{theta}"

Symbols

Symbols are primarily used for metaprogramming. Symbols are any valid
variable name starting with ::

aya> ::my_symbol
::my_symbol

Symbols can be any string if single quotes are used immediately after
the ::

aya> ::"My Symbol"
::"My Symbol"

Lists

Main Page:Lists

List Literals

Lists are written with square brackets ([]) and must not contain
commas. They may contain any data type:

aya> [1 2 3]
[1 2 3]
aya> []
[]
aya> [1 2 "Hello" [3 4]]
[1 2 "Hello" [3 4]]

Lists may also contain expressions:

aya> [1 2 + 3 4 +]
[3 7]

List Stack Captures

Use [N| ...] to capture items off the stack into the list

aya> 9 [1| 8 7 6]
[9 8 7 6]
aya> 10 9 [2| 8 7 6]
[10 9 8 7 6]
aya> 10 9 [2|]
[10 9]

List Comprehensions

Seelist comprehensions

Indexing

Get a value from a list

Use .[(index)] to get a value from a list

aya> [1 2 3 4] :list
[1 2 3 4]
aya> list.[0]
1
aya> list.[:-1]
4

Set a value at an index in a list

Use (value) (list) .[(index)] to set a the value in a list at an
index

aya> [1 2 3 4] :list
[1 2 3 4]
aya> 10 list.:[0]
[10 2 3 4]

Dictionaries

Main Page:Dictionaries and User Types

Dictionary Literals

Dictionary literals have the form {, ... }. All variables assigned
between {, and } are assigned to the dictionary

aya> {, 1:a 2:b }
{,
 2:b;
 1:a;
}

{,} creates an empty dict

aya> {,}
{,}

Getting Values

Use dot notation to get values from a dict:

aya> {, 1:a 2:b } :d
{,
 2:b;
 1:a;
}
aya> d.a
1
aya> d .b
2

Or use strings or symbols with index notation (.[])

aya> d.["a"]
1
aya> d.[::a]
1

Or use :I operator

aya> d ::a I
1
aya> d "a" I
1

Dot notation can be used with quoted variables

aya> {, 1:"Hello, world!" } :d
{,
 1:"Hello, world!";
}
aya> d."Hello, world!"
1

Setting Values

Use .: notation to set values of a dict

aya> {,} :d
{,}
aya> 10 d.:a
{,
 10:a;
}

Or using strings or symbols with index notation (.:[])

aya> 11 d.:["b"]
{,
 11:b;
 10:a;
}
aya> 12 d.:[::c]
{,
 11:b;
 10:a;
 12:c;
}

This notation can be used with quoted variables

aya> {,}:d
{,}
aya> 10 d.:"Hello, world!"
{,
 10:"Hello, world!";
}

Blocks

Main Page:Blocks & Functions

Basic Blocks

Use {...} to define a code block.

aya> {2 +}
{2 +}

If a code block is assigned to a variable, execute it immediately when
the variable is accessed

aya> {2 +}:add_two
{2 +}
aya> 4 add_two
6

Short Block Notation

Any set of tokens following a tick (```) until an operator or variable
will be parsed as a block. Useful for saving a character when golfing

aya> `+
{+}
aya> `1 + 1
{1 +} 1
aya> `"hello" 1 'd +
{"hello" 1 'd +}

This notation also terminates at variables names

aya> `x 1
{x} 1
aya> `1 x 1
{1 x} 1

Block Headers

Use a comma in a block to create a block header. Block headers define
local variables and block arguments

See Variables and Scope and Blocks and
Functions for more details.

If the header is empty, the block is parsed as a dict (see Dictionary)

aya> {, 1:a }
{,
 1:a;
}

Arguments

Add arguments to a block

aya> {a b c, a b + c -}:foo
{a b c, a b + c -}
aya> 1 2 3 foo
0

Arguments can have type assertions. The block will fail if the type does
not match

aya> {a::num b::str, "a is $a, b is $b"}:foo
{a::num b::str, "a is $a, b is $b"}
aya> 1 "two" foo
"a is 1, b is two"
aya> "one" 2 foo
 {ARGS}
 Expected:::str
 Received:2
 in a::num b::str, .. "a is $a, b is $b"}
Function call traceback:
 Error in: foo

Local Variables

To declare local variables for a block, use a : in the header:
{: ... ,}

aya> {: local_a local_b, 10:local_a 12:local_b 14:nonlocal_c} ~
10 12 14
aya> local_a
Undefined variable 'local_a'
 in local_a .. }
aya> nonlocal_c
14

Use parenthesis after the local variable to set the initial value

aya> {: local_a(99) , local_a} ~
99

Use ^ after a local variable to “capture” it from the surrounding
scope

aya> 1:a
1
aya> {: a^, }
{: a(1),}

Can mix & match locals and arguments

aya> 9 :captured_local
9
aya> { arg typed_arg::str : default_locl initialized_local(10) captured_local^, }
{arg typed_arg::str : default_locl(0)initialized_local(10)captured_local(9),}

Operators

Main Page:Operators

Standard Operators

All single uppercase letters except M are operators

aya> 6 R
[1 2 3 4 5 6]
aya> 4 [5] J
[4 5]

“Dot” Operators

Most characters immediately following a dot (.) are an operator

aya> 6 .R
[0 1 2 3 4 5]
aya> 6 .!
1

Exceptions

	Special Case

	Description

	.<grave>

	Deference Without Execution

	.#

	Line Comment

	.{

	Block Comment

	.'

	Symbol

Dereference Without Executing (.<grave>)

.<grave> Dereference a variable without executing the block

aya> {1 2 +}:f
{1 2 +}
aya> f
3
aya> f.`
{1 2 +}

If the variable is not a block dereference it normally

aya> 1:a
1
aya> a.`
1

“Colon” Operators

Most characters immediately following a color (:) are an operator

aya> [1 2] [2] :|
[1]

Exceptions

	Special Case

	Description

	:"

	Symbol

	:{

	Extension Operator

“Misc” Operators

M plus any character is an operator

aya> "Hash" M#
635696504
aya> 0.5 Ms
.47942554

Non-Standard “Infix” Stack Operators

List Map (:#)

The :# operator takes a block on its right and maps it to the list
on the stack

aya> [1 2 3] :# {1 +}
[2 3 4]

List Map Shorthand (#)

SeeBroadcast Operator

Same as :# but automatically creates a block using short block
notation

aya> [1 2 3] # 1 +
[2 3 4]

Capture Instructions (:`)

Takes a block B and a number N from the stack. Captures N
instructions from the instruction stack.

aya> {P} 2 :` 1 +
"[{1} {+}]"

Extension Operators

Extension operators have the form :{...}.

aya> 123456789 "dd/MM/yyyy HH:mm:ss" :{date.format}
"02/01/1970 05:17:36"

These operators are always wrapped in the standard library. They should
almost never be used for normal development

aya> import ::date
aya> 123456789 date!
Jan 02, 1970 5:17:36 AM

User Types

Struct

Defining A Struct

Create a struct with the following syntax:

struct <typename> {<member> <vars> ...}

For example:

aya> struct point {x y}
aya> point
(struct ::point [::x ::y])

Create Instance Of Struct

To create an instance of a struct, use the ! operator on the type.
Member variables should exist on the stack

aya> struct point {x y}
aya> 1 2 point!
(1 2) point!

Accessing Values of a Struct

Use standard dot notation to acces user type values

aya> struct point {x y}
aya> 1 2 point! :p
(1 2) point!
aya> p.x
1
aya> p.y
2

Struct Member Functions

Use the def keyword to define member functions for structs

aya> def point::format {self, "<$(self.x), $(self.y)>"}
aya> 1 2 point! :p
(1 2) point!
aya> p.format
"<1, 2>"

Golf Utilities

Golf Constants

Any single-character key stored in __cdict__ can be accessed using
¢ + that character

aya> {, "Hello!":"!" 10:a }:__cdict__
{,
 "Hello!":"!";
}
aya> ¢!
"Hello!"
aya> ¢a
10

golf standard library defines many useful variables in __cdict__

aya> import ::golf
aya> ¢Q
["QWERTYUIOP" "ASDFGHJKL" "ZXCVBNM"]
aya> ¢½
[1 2]

Footnotes

Operators

Type Abbreviations

	Type

	Abbreviation

	Number

	N

	String

	S

	Char

	C

	Block

	B

	Dict

	D

	Symbol

	J

Operator Table

	Name

	Args

	Ops

	Overload

	!

	N|C

	N : 1-N (logical not, complementary probability), C : swap case

	__new__

	#

	LA..#A

	LA..#A : map

	

	$

	A

	A : deepcopy (duplicate)

	

	%

	LB|LS|LC|BN

	LB : fold, LS : join, LC : join, BN : repeat

	

	&

	NN|SS

	NN : bitwise and, SS : list all expressions matching the regex

	__and__ / __rand__

	*

	NN

	NN : multiply

	__mul__ / __rmul__

	+

	NN|CC|SA|AS

	NN : add, CC : add, SA : append string, AS : append string

	__add__ / __radd__

	-

	NN|CC

	NN : subtract, CC : subtract

	__sub__ / __rsub__

	/

	NN

	NN : divide

	__div__ / __rdiv__

	;

	A

	A : pop and discard

	

	<

	NN|SS|CC

	NN : less than, SS : less than, CC : less than

	__lt__ / __rlt__

	=

	AA

	AA : equality

	__eq__

	>

	NN|SS|CC

	NN : greater than, SS : greater than, CC : greater than

	__gt__ / __rgt__

	?

	AA

	AA : if A1, then A2. If A2 is block, execute it

	

	@

	AAA

	AAA : rotates the top three elements on the stack [abc->bca]

	

	A

	A

	A : wrap in list

	

	B

	J|L|N|C

	J : increment in place, L : uncons from front, N : increment, C : increment

	__inc__

	C

	L|S|N

	L : sort least to greatest, S : sort least to greatest, N : bitwise not

	__sort__

	D

	ALN

	ALN : set index

	__setindex__

	E

	L|N|S

	L : length, N : 10^N, S : length

	__len__

	G

	S|N

	S : read a string from a filename or URL, N : isprime

	

	H

	LA|DS|DC|DJ|SA

	LA : has; 1 if list contains object, DS : has; 1 if dict contains key, DC : has; 1 if dict contains key, DJ : has; 1 if dict contains key, SA : has; 1 if string contains substring

	

	I

	LB|LL|LN

	LB : filter, LL : get index, LN : get index

	__getindex__

	J

	LA|AA|LL|AL

	LA : add to list, AA : create list [A A], LL : join lists, AL : add to list

	

	L

	LL|AN|NL

	LL : reshape, AN : create list by repeating A N times, NL : reshape

	

	N

	LA|DS|DJ|SS

	LA : return index of first occurance, -1 if not found; keep list on stack, DS : contains key; keep dict on stack, DJ : contains key; keep dict on stack, SS : return index of first occurance, -1 if not found; keep list on stack

	

	O

	LB|DB

	LB : Map block to list, DB : Map block to dict

	__each__

	P

	A

	A : to string

	__str__

	Q

	L|N

	L : random choice, N : N>0: random number 0-N, N<0: random number N-0, N=0: any int

	__random__

	R

	L|N|C

	L : len L = 2: range [N1, N1+1, …, N2], len l = 3: range [N1, N2, …, N3], N : range [1, 2 .. N], C : range [1, 2 .. N]

	__range__

	S

	SC|LN|SS

	SC : split at char, LN : split list at index, SS : split at regex

	

	T

	N

	N : negate

	__negate__

	U

	L

	L : reverse

	__reverse__

	V

	J|L|N|C

	J : decrement in place, L : uncons from back, N : decrement, C : decrement

	__dec__

	W

	B|L|D

	B : while loop (repeat as long as block returns true), L : sum (fold using +), D : export all variables

	

	X

	A

	A : assign to variable x and pop from stack

	

	Y

	A

	A : assign to variable y and leave on stack

	

	Z

	N|S

	N : cast to bignum, S : parse to bignum

	

	\\

	AA

	AA : swap top two elements on the stack

	

	^

	NN|SS

	NN : power, SS : levenshtein distance

	__pow__ / __rpow__

	|

	NN

	NN : logical or

	__or__ / __ror__

	~

	B|L|S|C|D

	B : evaluate, L : dump to stack, S : evaluate, C : evaluate, D : set variables if they exist in the local scope

	

	.!

	B|N|S

	B : copy block without header, N : signum, S : parse if number

	__signum__

	.$

	..AN

	..AN : copies the Nth item on the stack to the top (not including N)

	

	.%

	NN

	NN : integer division

	__idiv__ / __ridiv__

	.&

	SSS|LLB|SNN|LNN|NNN

	SSS : replace all occurances of the regex S1 with S2 in S3, LLB : zip with, SNN : convert base of N|S|L from N1 to N2, LNN : convert base of N|S|L from N1 to N2, NNN : convert base of N|S|L from N1 to N2

	

	.'

	L|N|S

	L : convert number list to string using UTF-8 encoding, N : cast to char, S : cast to char

	

	.(

	NN

	NN : left bitwise shift

	

	.)

	NN

	NN : signed right bitwise shift

	

	.*

	B|L

	B : decompile, L : compile

	

	.+

	NN|BD|BJ|BL<J>|DD

	NN : gdc, BD : swap vars in a copy of B for values defined in D, BJ : constant capture variable from outer scope, BL<J> : constant capture variables from outer scope, DD : update D1 with the values from D2 (modify D1)

	

	.-

	DS|DJ|LL|NN|LN

	DS : remove key from dict, DJ : remove key from dict, LL : remove items at indices L1 from L2, NN : lcm, LN : remove item at index N from L

	

	./

	N

	N : ceiling

	__ceil__

	.;

	..A

	..A : clear the entire stack

	

	.<

	SN|LN|NN|SS|CC

	SN : head / pad ‘ ‘, LN : head / pad 0, NN : greater of, SS : greater of, CC : greater of

	__head__

	.=

	LA|LL|AL

	LA : element-wise equivalence, LL : element-wise equivalence, AL : element-wise equivalence

	

	.>

	SN|LN|NN|SS|CC

	SN : tail / pad ‘ ‘, LN : tail / pad 0, NN : lesser of, SS : lesser of, CC : lesser of

	__tail__

	.?

	AAA

	AAA : if A1 then A2, else A3. If A2/A3 are blocks, execute

	

	.@

	..AN

	..AN : moves the Nth item on the stack (not including N) to the top

	

	.A

	..A

	..A : wrap entire stack in a list

	

	.B

	AL

	AL : append item to the back of a list

	

	.C

	LB|NN

	LB : sort least to greatest by applying B to L, NN : xor

	

	.D

	A

	A : throw an exception containing A

	

	.E

	L

	L : length, keep list on stack

	__len__

	.F

	L

	L : flatten nested list

	

	.G

	ASN

	ASN : write A as a string to file located at S. N = 0, overwrite. N = 1, append

	

	.I

	LNA|DSA|DJA

	LNA : getindex with default value, DSA : getindex with default value, DJA : getindex with default value

	__getindex__

	.K

	BB

	BB : try B1, if error, execute B2. Neither block has access to the global stack

	

	.M

	A

	A : get metatable

	

	.N

	LB

	LB : return the index of the first element of L that satifies E; keep list on stack

	

	.O

	AB

	AB : apply

	

	.P

	A

	A : print to stdout

	

	.Q

	-

	- : return a random decimal from 0 to 1

	

	.R

	L|N

	L : linspace [from to count], if count not provided, use 100, N : range [0, 1, .., N-1]

	

	.S

	LL|LN

	LL : rotate [rows cols], LN : rotate]

	

	.T

	L

	L : transpose a 2d list

	

	.U

	S

	S : requests a string using a ui dialog, S is the prompt text

	

	.V

	AL

	AL : append item to back of list

	

	.\\

	N

	N : floor

	__floor__

	.^

	N|S

	N : square root, S : quote regex

	__sqrt__

	.|

	B|N

	B : get meta information for a block, N : absolute value

	__abs__

	.~

	B|J|S|C|D

	B : get contents of block, J : deref variable; if not a block, put contents in block, S : parse contents to a block, C : parse contents to a block, D : set all variables

	

	:!

	AA

	AA : assert equal

	

	:#

	L:#B|D:#B

	L:#B : map, D:#B : map over key value pairs

	__each__

	:$

	..AN

	..AN : copies the first N items on the stack (not including N)

	

	:%

	NN

	NN : mod

	__mod__ / __rmod__

	:&

	A

	A : duplicate reference (same as $ but does not make a copy)

	

	:'

	S|N|C

	S : convert a string to bytes using UTF-8 encoding, N : identity; return N, C : to int

	

	:*

	LLB

	LLB : outer product of two lists using B

	

	:;

	..AA

	..AA : clear all but the top of the stack

	

	:<

	NN|SS|CC

	NN : less then or equal to, SS : less then or equal to, CC : less then or equal to

	__leq__ / __rleq__

	:=

	AJ|AC|AS

	AJ : assign A to variable, AC : assign A to variable, AS : assign A to variable

	

	:>

	NN|SS|CC

	NN : greater than or equal to, SS : greater than or equal to, CC : greater than or equal to

	__geq__ / __rgeq__

	:?

	A

	A : convert to boolean

	

	:@

	AA

	AA : isinstance

	

	:A

	..AN

	..AN : collect N items from stack into list

	

	:B

	S

	S : interpolate string

	

	:C

	J|S

	J : convert symbol to string name, S : return S

	

	:D

	ASD|AJD

	ASD : set dict index, AJD : set dict index

	

	:E

	L|D

	L : shape, D : number or items in a dict

	

	:G

	
	n/a : Return the variable scope stack as a list of dicts

	

	:I

	DS|DJ

	DS : get dict item from key, DJ : get dict item from key

	

	:J

	LA|AA|LL|AL

	LA : add to list (modify list), AA : create list [A A], LL : concatenate lists (modify list 1), AL : add to list (modify list)

	

	:K

	D

	D : return a list of keys as symbols

	

	:M

	BD|DD

	BD : duplicate block with the given metadata, DD : set D1’s meta to D2 leave D1 on stack

	

	:N

	LA

	LA : find all instances of A in L

	

	:O

	AAB

	AAB : apply (2-arg)

	

	:P

	A

	A : println to stdout

	

	:R

	-

	- : readline from stdin

	

	:S

	B|S|C

	B : if block has single var or op convert to symbol list, else return empty list, S : convert to symbol, C : convert to symbol

	

	:T

	A

	A : type of (returns a symbol)

	

	:V

	D

	D : return a list of values

	

	:Z

	N

	N : sleep (milliseconds)

	

	:`

	BN:`A

	BN:`A : wrap next N instructions in a block

	

	:|

	LL

	LL : remove all elements in L2 from L1

	

	:~

	L

	L : remove duplicates

	

	M!

	N

	N : factorial

	__fact__

	M#

	A

	A : hash code of the object

	

	M$

	-

	- : system time in milliseconds

	

	M?

	B|N|S

	B : get help data for operator, N : list op descriptions where N=[0:std, 1:dot, 2:colon, 3:misc], S : search all help data

	

	MC

	N

	N : inverse cosine

	__acos__

	MI

	NN

	NN : create complex number

	

	ML

	N

	N : base-10 logarithm

	__log__

	MS

	N

	N : inverse sine

	__asin__

	MT

	N

	N : inverse tangent

	__atan__

	Ma

	J

	J : Aya meta information

	

	Mb

	B|J

	B : duplicate block, add locals if they do not exist, J : is defined

	

	Mc

	N

	N : cosine

	__cos__

	Md

	N|S

	N : cast to double, S : parse double, if invalid, return 0.0

	__float__

	Me

	N

	N : exponential function

	__exp__

	Mi

	N

	N : imag part of complex number

	__imag__

	Mk

	CS|NN

	CS : add special character, NN : unsigned right bitshift

	

	Ml

	N

	N : natural logarithm

	__ln__

	Mm

	D

	D : true if the dict has a metatable, leave D on stack

	

	Mp

	N

	N : list primes up to N

	

	Mr

	N

	N : convert to fractional number

	

	Ms

	N

	N : sine

	__sin__

	Mt

	N

	N : tangent

	__tan__

	Mu

	NN

	NN : y x Mu => atan2(y,x)

	

Footnotes

Numbers

Aya has several representations for numbers: Num (represented by a
double), BigNum, Rationals, and Complex (coming soon). Numbers are only
promoted when needed. Number literals are always converted to Nums. Aya
uses standard mathematical operators.

3 4 + .# => 7
5 6 - .# => -1
2 0.5 * .# => 1.0
3 2 ^ .# => 9
6 4 / .# => 1.5
6 2 / .# => 3

- is never a unary operator.

8 3 -1 .# is evaluated as (8 3-) 1 => 5 1
-1 .# ERROR: Empty stack at operator '-'

To write negative numbers, use a colon (with or without a -)

:1.5 .# => -1.5
:-1.5 .# => -1.5

Special Number Literals

SeeSyntax Overview: Numbers

Special number literals always begin with a colon. Special number
literals can be used to create negative numbers, bignums,
rationals, and complex numbers (coming soon).

.# A colon paired with a number with no additional formatting is negative
:3 .# -3
:-3 .# -3

.# BigNums end with a z
:123z .# 123
:-3.1232z .# -3.1232

.# Rational numbers separated numerator and denominator with a r
:1r2 .# 1/2
:3r .# 3/1

.# Complex numbers are separated with an i
:1i .# The imaginary unit
:2i5 .# 2i + 5

Special number literals also provide ways for creating numbers using
binary and hexadecimal formatting.

.# Hexadecimals begin with :0x
.# All letters must be lowercase
:0xff .# 255
:0x111 .# 273

.# Binary literals begin with :0b
:0b11010 .# 26

.# Large hexidecimal and binary numbers are converted to BigNums
:0xfffffff .# 268435455 (Num)
:0xffffffff .# 4294967295 (BigNum)

Misc. Number Literals

Like all number literals, these values are evaluated pre-runtime.

Scientific Notation

Number literals of the form :NeM are evaluated to the literal number
N * 10^M.

aya> :4e3
4000
aya> :2.45e12
2450000000000
aya> :1.1e-3
.0011

PI Times

Number literals of the form :NpM are evaluated to the literal number
(N * PI)^M. If no M is provided, use the value 1.

aya> :1p2
9.8696044
aya> :1p
3.14159265
aya> :3p2
88.82643961

Root Constants

Number literals of the form :NqM are evaluated to the literal number
N^(1/M). The default value of M is 2.

aya> :2q
1.41421356
aya> :9q
3
aya> :27q3
3

Footnotes

Lists

SeeSyntax Overview: Lists

List literals are created using square brackets and do not need commas.
Literals are first evaluated as their own stack. The results remaining
on the stack become the list items.

[1 2 3 4 5] .# Do not use commas
[1 2 + 7 2 - 3!] .# => [3 5 -3]

List literals can grab items from the outer stack using the format
... [num| ...] where num is an integer literal.

aya> 1 2 3 4 5 [3| 6 7 8]
1 2 [3 4 5 6 7 8]

aya> 'h 'e [2|'l 'l 'o]
"hello"

aya> "a" "b" [2|]
["a" "b"]

List grabbing only uses integer literals

aya> 2 :n
2
aya> 1 2 [n| 3 4]
ERROR: Empty stack at operator '|'
stack:
 1 2
just before:

Essential List Operations

List Indexing

Lists are indexed using square bracket syntax following a .. For
Example:

aya> ["the" "cat" "in" "the" "hat"]:list
["the" "cat" "in" "the" "hat"]
aya> list.[0]
"the"

Aya supports negative indexing, multiple indexing and filtering with
this syntax.

aya> list.[:1]
"hat"
aya> list.[1 4]
["cat" "hat"]
aya> list.[{E 3 =}]
["the" "cat" "the" "hat"]

	Arg
Type

	Function

	Input

	Out
put

	Numb
er

	Choose the nth item from the list
(starting from 0)

	[1 2 3].[1
]

	``2
``

	List

	Use each item in the second list to
index the first

	
	``”abc”.[1 2
	2]``

	"
bcc
"

	Bloc
k

	Filter the list. Take all items that
satisfy the block

	[1 1 2 2].
[{1=}]

	[
1 1
]

Lists can also be indexed using the I operator:

aya> ["the" "cat" "in" "the" "hat"]:list
["the" "cat" "in" "the" "hat"]
aya> list 0 I
"the"
aya> list :1 I
"hat"

.I operator takes a default value if the index is out of bounds:

aya> ["hello" "world"] 0 "nope" .I
"hello"
aya> ["hello" "world"] 9 "nope" .I
"nope"

Use the following syntax to set elements of a list

item list.:[i]

which is equivalent to list[i] = item in C-style languages.

Essential List Operators

SeeOperators

Extend (K)

aya> [1 2 3] :list
[1 2 3]
aya> list [4 5 6] K
[1 2 3 4 5 6]
aya> list
[1 2 3 4 5 6]

Join (J)

Similar to ``K`` but never modifies either list

aya> [1 2 3] :list;
aya> list [4 5 6] J
[1 2 3 4 5 6]
aya> list
[1 2 3]

Reshape (L)

aya> 9R [3 3] L
[[1 2 3] [4 5 6] [7 8 9]]
aya> [1 2] [2 2 2] L
[[[1 2] [1 2]] [[1 2] [1 2]]]
aya> 100R [2 3] L
[[1 2 3] [4 5 6]]

Flatten (.F)

aya> [[1 2] [3] 4 [[5] 6]] .F
[1 2 3 4 5 6]

Pop from front / back

aya> [1 2 3] B
[1 2] 3
aya> [1 2 3] V
[2 3] 1

Append to front / back

aya> 1 [2 3] .B
[2 3 1]
aya> 1 [2 3] .V
[1 2 3]

Generators

Range (R)

One item: create a range from 1 (or 'a') to that number.

10 R .# => [1 2 3 4 5 6 7 8 9 10]
'B R .# => "...56789:;<=>?@AB" (from char code `1` to the input char)

Two items: create a range from the first to the second.

[5 10] R .# => [5 6 7 8 9 10]
['z 'w] R .# => "zyxw"
"zw" R .# => "zyxw"

Three items: create a range from the first to the third using the second
as a step.

[0 0.5 2] R .# => [0 0.5 1.0 1.5 2.0]
[2 2.5 4] R .# => [2 2.5 3 3.5 4]

List comprehension

When commas are used inside of a list literal, the list is created using
list comprehension. List comprehension follows the format
[range, map, filter1, filter2, ..., filterK]. The range section is
evaluated like the R operator. When the list is evaluated, the
sections are evaluated from left to right; first create the range, then
map the block to the values, then apply the filters. All filters must be
satisfied for an item to be added to the list.

If the map section is left empty, the list is evaluated as a basic
range.

aya> [10 ,]
[1 2 3 4 5 6 7 8 9 10]

aya> ['\U00A3' '\U00B0' ,]
"£¤¥¦§¨©ª«¬­®¯°"

aya> [0 3 15 , T]
[0 -3 -6 -9 -12 -15]

Here are some examples using map and filter.

aya> [10, 2*]
[2 4 6 8 10 12 14 16 18 20]

aya> [10, 2*, 5<]
[2 4]

aya> [10, 2*, 5<, 4=!]
[2]

.# Can grab from stack
aya> 3 [1| 6 18, 2*]
[6 12 18 24 30 36]

If a list literal is used as the first section of a list comprehension,
the list comprehension is simply applied to the inner list.

aya> [[1 2 3 4 5], 2*, 7<]
[2 4 6]

If there are two or more lists used as the first argument of a list
comprehension, and each list is the same length, all respective elements
of each list will be added to the stack when applying the map and filter
sections.

aya> [[1 2 3][4 5 6], +]
[5 7 9]

aya> ["hello" "world", J]
["hw" "eo" "lr" "ll" "od"]

The Broadcast Operator

is a very powerful infix operator. It’s primary function is map.
It takes the arguments from its right side and maps them to the list on
the left side.

[1 2 3] # {1 +} .# => [2 3 4]

If a block is not given on the right side, # will collect items
until an operator or variable is encountered.

.# Same as the previous example
[1 2 3] # 1 + .# => [2 3 4]

will also collect items on its left side until a list is hit. It
will add these items to the front of the block being mapped to.

.# Also the same as the previous line
[1 2 3] 1 # + .# => [2 3 4]

This operator can be used to construct “for loops” on variables

"hello" :str;
str # {c,
 c toupper
}
=> "HELLO"

The :# operator works the same way except it always takes a list
on the left and a block on the right:

list :# {block}

aya> [1 2 3] :# {3+}
[4 5 6]

aya> [1 2 3] 3 :# +
ERROR: Empty stack at operator ':#'

aya> [1 2 3] 3 # +
[4 5 6]

aya> [1 2 3] 3 :# {+}
TYPE ERROR: Type error at (:#):
 Expected ((L:#B|D:#B))
 Recieved ({+} 3)
stack:
 [1 2 3]
just before:

Footnotes

Characters

SeeSyntax Overview: Characters

Character literals are created using single quotes. Most characters do
not need closing quotes.

'a .# => 'a
'p'q .# => 'p 'q

Special Characters

Using a \ after a single quote denotes a special character. Special
characters always need a closing single quote.

Hex character literals

Hex literal characters are written using a '\x___' and need closing
quotes.

aya> '\x00FF'
'ÿ'
aya> '\x00A1'
'¡'

Named Characters

Many characters have names. All names consist only of lowercase
alphabetical characters. Named characters can be used like so within
Aya:

'\alpha' .# => 'α'
'\pi' .# => 'π'
'\because' .# => '∵'
'\n' .# => <newline>
'\t' .# => <tab>

To add or override a named character from within Aya, use the Mk
operator.

aya> '\integral'
SYNTAX ERROR: '\integral' is not a valid special character

aya> '\U222b' "integral" Mk

aya> '\integral'
'∫'

Strings

SeeSyntax Overview: Strings

Strings are created using the double quote character ".

"I am a string"
"I am a string containing a newline character\n\t and a tab."

Strings may span multiple lines.

"I am a string containing a newline character
 and a tab."

Strings can contain special characters using \{___}. Brackets can
contain named characters or Unicode literals.

"Jack \{heart}s Jill" .# => "Jack ♥s Jill"
"sin(\{theta}) = \{alpha}" .# => "sin(θ) = α"
"\{x00BF}Que tal?" .# => "¿Que tal?"

Strings are essentially a list of characters, so any list operator that
can be used on lists can be can be used on strings.

"Hello " "world!" K .# => "Hello world!"
['s't'r'i'n'g] .# => "string"
"abcde".[2] .# => 'c'

String Interpolation

Use the $ character within a string to evaluate the variable or
statement following it. If used with a variable name, evaluate the
variable name.

aya> 5:num;
aya> "I have $num apples"
"I have 5 apples"

If used with a group (), evaluate the group.

aya> "I have $(1 num +) bananas"
"I have 6 bananas"

If there are more than one item left on the stack, aya dumps the stack
inside square brackets.

aya> 123:playera;
aya> 116:playerb;
aya> "The final scores are $(playera playerb)!"
"The final scores are [123 116]!"

If used after a \, keep the $ char.

aya> 10:dollars;
aya> "I have \$$dollars."
"I have $10"

If used with anything else, keep the $.

aya> "Each apple is worth $0.50"
"Each apple is worth $0.50"

Here are some additional examples:

aya> 5:num;
aya> 0.75:price;
aya> "I sold $num apples for \$$price each and I made \$$(num price*)"
"I sold 5 apples for $0.75 each and I made $3.75"

aya> "Inner $(\"strings\")"
"Inner strings"

aya> "Inner $(\"$a\") interpolation requires backslashes"
"Inner 1 interpolation requires backslashes"

aya> "Inner-$(\"$(\\\"inner\\\")\") interpolation can be messy"
"Inner-inner interpolation can be messy"

Long String Literals

Long strings are entered using triple quotes. No characters are escaped
within long strings. In the following code…

"""<div id="my_div">
 <h1>\n: the newline character</h1>
 <p>\{alpha}<p>
 <p>$interpolate</p>
</div>"""

…no escape characters are parsed in the output:

"<div id="my_div">
 <h1>\n: the newline character</h1>
 <p>\{alpha}<p>
 <p>$interpolate</p>
</div>"

Footnotes

Blocks

Blocks contain expressions. They can be used to define functions, map
instructions to lists, etc. They are denoted using curly braces {}.

{20 50 +}

They can be evaluated by using the ~ operator.

{20 50 +}~ .# => 70

When blocks are evaluated, their contents are dumped to the stack and
the stack continues as normal. This is what happens when we call
functions as well.

100 10+ {1 + 2 *}~
 110 {1 + 2 *}~
 110 1 + 2 *
 111 2 *
 222

Block Header

A comma (,) is used to specify that the block has a header. Anything
before the comma is considered the header and everything after is
considered the instructions. A block header is used to introduce local
variables to the block in the form of arguments or local declarations.
Arguments and declarations are separated by a colon (:). Arguments
must go on the left hand side of the colon and local declarations on the
right.

{<arg1> <arg2> … <argN> : <local dec 1> ... <local dec M>, <block body>}

If no colon is included in the header, all variable names will be used
as arguments.

{<arg1> <arg2> … <argN>, <blovk body>}

If a colon is the first token in a block header, all variable names are
considered local declarations.

{: <local dec 1> <local dec 2> ... <local dec M>, <block body>}

Finally, if nothing is included in the block header, the block will be
parsed as a dictionary.

{, <dict body>}

Arguments

Arguments work like parameters in programming languages with
anonymous/lambda functions. Before the block is evaluated, its arguments
are popped from the stack and assigned as local variables for the block.

aya> 4 {a, a2*}~
8

Arguments are popped in the order they are written.

aya> 8 4 {a b, [a b] R}~
[8 7 6 5 4]

Arguments are local variables.

aya> 2:n 3{n, n2^}~ n
2 9.0 2

Argument Type Assertions

Arguments may have type assertions. Write a variable name followed by a
symbol corresponding to the type.

1 2 {a::num b::num, a b +}~ .# => 3
"1" 2 {a::num b::num, a b +}~ .# TYPE ERROR: Type error at ({ARGS}):
 Expected (::num)
 Recieved ("1")

If a user defined type defines a type variable as a symbol. The
symbol will be used for type assertions.

{,
 ::vec :type;

 ... define vec variables and functions ...
}:vec;

{v::vec,
 v :P
}:printvec;

The type checker will use the .type variable:

aya> 1 2 vec! :v
<1,2>
aya> v printvec
<1,2>
aya> 3 printvec
TYPE ERROR: Type error at ({ARGS}):
 Expected (::vec)
 Recieved (3)

Local Declarations

Local declarations introduce a local scope for that variable. Scope is
discussed in greater detail in the Variable Scope section of this
document. Local declarations can not have type declarations.

aya> "A":a
"A"
aya> a println {:a, "B":a; a println}~ a println
A
B
A

All local declarations default to the value 0.

{: a, "a is $a" :P } ~

Change the default value for a local variable using an initializer.

aya> {: a(10) b c("hello") d([1 2]), [a b c d] } ~
[10 0 "hello" [1 2]]

Variables are initialized before run time and therefore can not be
variables.

aya> 99 :l
99

aya> {: a(l), a} ~
SYNTAX ERROR: Block header: Local Variables Initializer: Must contain only const values

aya> .# define a as a function which evaluates to l
aya> {: a({l}), a} ~
99

aya> .# define a as a list which evaluates to l
aya> {: a([l]), a} ~
[99]

Keyword Arguments

Aya provides a way to use keyword arguments using dictionaries and local
declarations. Consider the following function:

{kwargs::dict : filename("") header dtype(::num),
 kwargs .W

 "filename=\"$filename\", header=$header, dtype=$dtype" :P
}:fn;

The function fn contains 1 argument kwargs (the name can be
anything) and three local declarations. The operator .W will export
variables from the kwargs dict only if they are defined in the local
scope. This means that any variables defined in kwargs will
overwrite the initialized local variables. Every variable not given by
kwargs dict will remain in its default state.

aya> {, "sales.csv":filename 1:header} fn
filename="sales.csv", header=1, dtype=::num

aya> .# The variable `useless` does not exist in the local scope of `fn`
aya> .# and will therefore be ignored
aya> {, "colors.csv":filename "blah":useless} fn
filename="colors.csv", header=0, dtype=::num

aya> {, "names.csv":filename ::str:dtype} fn
filename="names.csv", header=0, dtype=::str

aya> {, } fn
filename="", header=0, dtype=::num

Functions

We now have the basic building blocks for defining functions: variable
assignment and blocks. A function is simply a variable that is bound to
a block. When the variable is called, the interpreted dumps the contents
of the block onto the instruction stack and then continues evaluating.
Functions can take advantage of anything that a normal block can
including arguments and argument types.

Here are a few examples of function definitions: swapcase takes a
character and swaps its case.

aya> {c::char, c!}:swapcase;
aya> 'q swapcase
'Q'

Below is the definition of the standard library function roll, This
function will move the last element of a list to the front.

aya> {B\.V}:roll;
aya> [1 2 3 4] roll;
[4 1 2 3]

When used with block arguments, functions can be written in very
readable ways. The following function swapitems takes a list and two
indices and swaps the respective elements. It uses block arguments and
type assertions.

{listL i::num j::num : tmp,
 list i I : tmp;
 list j I list i D
 tmp list j D
 list
}:swapitems;

aya> [1 2 3 4 5] 0 3 swapitems
[4 2 3 1 5]

To see more examples check out the standard library located at
/base/std.aya

Footnotes

Dictionaries

A dictionary is a set of key-value pairs. The keys must always be valid
variable names. A dictionary literal is created using a block with an
empty header. The block is evaluated and all variables are in assigned
in the scope of the dictionary.

{,
 <dictionary body>
}

Below is a simple dictionary example.

.# Define a simple dictionary
{,
 1:one;
 2:two;
 3:three;
}:numbers;

Empty dictionaries are created if the block and the header are empty.

aya> {,}
{,
}

Accessing Values

Access variables are used to access variables in dictionaries and user
types. To create an access variables, use a dot before the variable
name.

aya> numbers.two
2

.# whitespace is optional
aya> numbers .one
1

Assigning / Creating Values

Dictionary values can be assigned using the .: operator.

aya> {, 1:a 2:b} :d
{,
 1:a;
 2:b;
}
aya> 4 d.:a
{,
 4:a;
 2:b;
}
aya> 9 d.:c
{,
 4:a;
 2:b;
 9:c;
}

They may also be assigned using the following syntax:

item dict.:[key]

where key is a string or a symbol.

For example:

aya> {, 0:x } :dict;
aya> 1 dict.:[::y]
aya> dict
{,
 0:x;
 1:y;
}

aya> 1 dict.:["y"]
aya> dict
{,
 0:x;
 1:y;
}

Loop over k/v pairs in a dict using the :# operator

aya> dict :# {k v, v 1 + dict.:[k]}
aya> dict
{,
 1:x;
 2:y;
}

Metatables

In Aya, metatables can be used to define custom types with separate
functionality and moderate operator overloading. User types are
represented internally as an array of objects paired with a dictionary.
Any dictionary can contain a read-only set of variables as a metatable.
Metatables typically contain functions that act on the dictionaries
values. For example, if we define the metatable

{, {self, self.x self.y +}:sum; {}:donothing; } :meta;

and the dictionary

{, 1:x 2:y {}:none } :dict;

we can set the metatable using the MO operator like so

aya> meta meta.:__meta__
{,
 1:x;
 2:y;
 {}:none;
}

We can see that the dict still has the values x and y but it
also now has a hidden entry for the key sum in its metatable. When we
call the metatable variable, the dictionary will be left on the stack
and the metatable value will be evaluated.

aya> dict.sum
3
aya> dict.donothing
{,
 1:x;
 2:y;
 {}:none;
}

Footnotes

Variables

SeeSyntax Overview: Variables

Variables may only contain lower case letters and underscores. They are
assigned using the colon (:) operator. The value is left on the stack
after the assignment has occurred.

aya> 1 :a
1
aya> 3:b a +
4

Variable Scope

A new scope is introduced if a block contains any variable declaration
in its header. When a variable assignment occurs, the interpreter will
walk outward until a reference to that variable appears. If it does not
appear in any of the scopes before the global scope, a new reference
will be created there. In order to ensure a variable is using local
scope, the variable name must be included in the block header. If a
block does not contain a header, a new scope will not be introduced.
These concepts are best demonstrated by example.

Let us introduce the variables a and b:

"A":a; "B":b;

When blocks have arguments, a scope is introduced for that variable.
Here, the number zero is assigned to b within the scope of the
block. When the block ends, the scope is destroyed and we reference the
now global variable b.

aya> 0 {b, b.P}~ b.P
0B

Local variables also create local scopes for that variable. Here, we
create a local scope for the variable b. a is not included in
the new scope.

aya> .# Local variable b declared in header
 {:b,
 0:a;
 1:b;
 "a = $a," .P
 "b = $b\n" .P
 }~
 "a = $a," .P
 "a = $b\n" .P

a = 0,b = 1
a = 0,a = B

Footnotes

User-Defined Types

Classes

Classes are defined using the class keyword

aya> class person
aya> person
<type 'person'>

Constructor

The constructor (__init__) takes any number of optional arguments
followed by a self argument. self must always be the last
argument in the list:

def person::__init__ {name age self,
 name self.:name;
 age self.:age;
}

Create an object with the ! operator:

aya> "Jane" 25 person! :jane;
(person 0x259984df)
aya> jane.name
"Jane"
aya> jane.age
25

Functions

Like the constructor, a member function takes self as an argument:

def person::greet {self,
 "Hi it's $(self.name)"
}

It is called like any other class variable:

aya> jane.greet
"Hi it's Jane"

Print/String Overloading

__repr__ is a special function that is called when the object is
printed. Overload it to change how an object is printed to the console

def person::__repr__ {self,
 "person: $(self.name)"
}

For example

aya> jane
person: Jane

__str__ is a special function that is called when the object is
converted to a string

def person::__str__ {self,
 self.name
}

For example

aya> jane P
"Jane"
aya> "I saw $jane the other day"
"I saw Jane the other day"

Operator Overloading

Many operators can be overloaded for user types. Type
\? overloadable in the repl for a full list. Many of the standard
libraries use this feature to seamlessly integrate with the base
library. For example, the matrix library uses it for all math operators:

aya> import ::matrix
aya> [[1 2][3 4]] matrix! :m
[[1 2]
 [3 4]]
aya> m 10 + 2 /
[[5.5 6]
 [6.5 7]]

It is especially useful when writing libraries for code golf. The
asciiart library uses it to create specialized operators on it’s
custom string type. Here is a 13 character function for creating a size
N serpinski triangle:

aya> 4 "##`#"_\L{I}/
asciiart:
################
#
##
#
####
#
##
#
########
#
##
#
####
#
##
#

Let’s overload the increment operator (B) to increment a person’s
age.

Here we modify the object directly

def person::__inc__ {self,
 self.age B self.:age;
}

Gives us

aya> jane.age
25
aya> jane B
aya> jane.age

If we don’t want to modify the object but return a modified copy we
could have chose to use the $ syntax to pass a copy of the object
instead:

def person::__inc__ {self$,
 self.age B self.:age;
 self .# Leave the copy on the stack
}

Usage

aya> jane.age
25
aya> jane B :jane_older;
aya> jane.age
25
aya> jane_older.age
26

Class Variables & Functions

To define a shared class variable, assign it to the class directly:

def person::counter 0

or

0 person.:counter;

We can then redefine our construtor to keep track of how many times
we’ve called the constructor.

Note that we can access counter directly from self but we need
to use __meta__ to update it to ensure we are updating the shared
variable.

def person::__init__ {name age self,
 name self.:name;
 age self.:age;
 self.counter 1+ self.__meta__.:counter;
}

Class functions take the class as an argument:

def person::create_anon {cls,
 "Anon" 20 cls!
}

They are called with the class (rather than with an instance)

aya> person.create_anon :anon
(person 0x7a1fe926)
aya> anon.name
"Anon"

Inheritance

Aya classes support single inheritance. We can use the extend operator
to create a class that is derived from another class. Here we create an
employee class which extends the person class. It will simply
add a job field.

Note that extend is not a keyword like class but an operator
that takes the class as a symbol argument

::employee person extend;

or more generally

::derived base extend;

Our constructor calls the person constructor with name and age
and then adds a job field.

def employee::__init__ {name age job self,
 .# call super constructor
 name age self super.__init__

 .# derived-specific code
 job self.:job;
}

In the example below, not that employee still calls __repr__ we
defined for the person class.

aya> "Bob" 30 "salesman" employee!
person: Bob

We can overload the greet function to include the job:

def employee::greet {self : greeting,
 .# call super greet
 .# must pass `self` to super
 self super.greet :greeting;

 .# append derived-specific greeting to output
 greeting ", I'm a $(self.job)" +
}

Calling it:

aya> bob.greet
"Hi it's Bob, I'm a Salesman"

Structs

In Aya, structs are classes. The struct keyword simply creates a
class with a few convience functions already defined.

The syntax is

struct <name> {<member1>, <member2>, ...}

For example, lets create a point struct for representing a 2d point:

struct point {x y}

The constructor is created automatically for us. It takes each member as
an argument in the same order they are defined

aya> 3 4 point! :p;
aya> p.x
3
aya> p.y
4

__repr__ and __str__ functions are also automatically created:

aya> p
(3 4) point!
aya> p P
"(3 4) point!"

Internals

Keywords such as class, struct, and def are not actually
keywords at all. They are regular aya functions defined completely in
aya code (see base/aya.aya).

Classes, structs, and object instances are simply dictionaries with
special meta dictionaries. If you are interested in seeing how these
are implemented entirely in aya, read on.

Below is an example of a 2d vector “class” definition written from
scratch without using any convience functions. Member functions and
overloads work the same as they do for normal classes. The only major
difference is object creation (__new__ vs __init__) and the
special variables __pushself__ and __type__ at the top of the
metatable.

{,

 1:__pushself__;
 ::vec:__type__;

 .# Constructor
 {x y cls,
 {,
 x:x;
 y:y;
 cls:__meta__;
 }
 }:__new__;

 .# Member functions

 .# Print overload
 {self,
 "<$(self.x),$(self.y)>"
 }:__repr__;

 .# Compute vector length
 {self,
 self.x 2^ self.y 2^ + .^
 }:len;

 .# Operator overload
 {other self,
 other.x self.x +
 other.y self.y +
 vec!
 }:__add__;

}:vec;

Special Metatable Variables

1:__pushself__;
::vec:__type__;

__pushself__ tells aya to push a reference of the object to the
stack when calling functions on it. It effectively enables the use of
self

The symbol assigned to __type__ is used for type checking and
overloading the :T (get type) and :@ (is instance) operators.

Constructor

{x y cls,
 {,
 x:x;
 y:y;
 cls:__meta__;
 }
}:__new__;

Object construction with the ! operator is just a standard operator
overload that calls __new__.

Note: For classes, __new__ creates an instance of the object
(i.e. self) and then calls __init__ wich takes self as an
argument.

Footnotes

Metaprogramming

Blocks

Aya provides a basic data structure for representing code called a
block. A block is a list of instructions. Internally, every Aya
program is a block.

aya> {1 1 +}
{1 1 +}

Evaluate it with the ~ operator

aya> {1 1 +} ~
2

By default, blocks assigned to variables are automatically evaluated
when de-referenced. Use .` to get the block without
evaluating it.

aya> {1 1 +} :a
{1 1 +}
aya> a
2
aya> a.`
{1 1 +}

Split a block into parts using the .* operator.

aya> {3 4 *} .*
[{3} {4} {*}]

The same operator is used to join a list into a block:

aya> [{3} {4} {*}] .*
{3 4 *}

.* automatically converts data into instructions

aya> [3 4 {*}] .*
{3 4 *}

For example, make_adder is a function that takes a number N and
creates a block of code that adds N to its input

aya> { {+} J .* }:make_adder
{{+} J .*}
aya> 5 make_adder :add_five
{5 +}
aya> 4 add_five
9

Macros

In Aya, programs are evaluated from left to right

aya> 1 2 +
3
aya> 1 2 + 4 *
12

Above, the + and * operators read data from their left. When
evaluating +, everything to the left is considered data and
everything to the right is considered instructions.

 1 2 + 4 *
<-- data | instructions -->

All standard operators and functions operate only on data; that is,
things to their left.

A macro is a function that operates on instructions; or things to its
right. Macros may also operate on data and instructions.

For example, struct is a macro that reads two instructions: the type
name and the list of member variables.

aya> struct point {x y}
<type 'point'>

if is a macro that reads 3 instructions to achieve behavior similar
to if keywords from imperitive languages

aya> if (1) {"true!"} {"false!"}
"true!"

The :` operator is used to create macros. It takes 2 data
arguments. A block B and an integer N. When evaluated, it will
wrap each of the next N instructions in a block (converting them
to data) then wrap the whole thing in a list. Then it will run B
after the newly created block.

aya> { "data block" } 1 :` instruction
[{instruction}] "data block"
aya> {1} 2 :` 3 +
[{3} {+}] 1

Macro Example

Lets define a macro apply that applies the instruction after it to
each element of a list.

aya> ["three" "two" "one"] apply .upper
["THREE" "TWO" "ONE"]

First we use :` to capture the instruction we want to apply
then use the ~ operator to unwrap the instruction list

aya> ["three" "two" "one"] { } 1 :` .upper
["three" "two" "one"] [{.upper}]
aya> ["three" "two" "one"] { ~ } 1 :` .upper
["three" "two" "one"] {.upper}

We use the map operator O to apply the block to each element of the
list

aya> ["three" "two" "one"] { ~ O } 1 :` .upper
["THREE" "TWO" "ONE"]

Now we can replace .upper with the reverse operator U to reverse
the strings in the list instead

aya> ["three" "two" "one"] { ~ O } 1 :` U
["eerht" "owt" "eno"]

Finally, we can remove our example data and define our macro.

aya> { { ~ O } 1 :` } :apply
{{~ O} 1 :`}

Usage:

aya> ["three" "two" "one"] apply .upper
["THREE" "TWO" "ONE"]
aya> ["three" "two" "one"] apply U
["eerht" "owt" "eno"]
aya> ["three" "two" "one"] apply .[0]
"tto"

Apply multiple instructions by wrapping them in ()

aya> ["three" "two" "one"] apply ("!" +)
["three!" "two!" "one!"]

Footnotes

Standard library

This section is still a work in progress

The Aya standard library consists of type definitions, mathematical
functions, string and list operations, plotting tools and even a small
turtle graphics library. It also defines functions and objects for
working with colors, dates, files, GUI elements, and basic data
structures such as queues, stacks, and sets. The standard library also
contains a file which defines extended ASCII operators for use when code
golfing.

asciiart

Provides an asciiart datatype and several operator overloads for drawing
complex ascii art pictures with only a few characters.

Run length encoding:

aya> " #` # #`5#"_
asciiart:
 #
 # #
#####

Operator overloads

aya> " #` # #`5#"_ T
asciiart:
 #
 ##
#
 ##
 #

aya> " #` # #`5#"_ $I
asciiart:
 #
 # #
 #####
 # #
 # # # #
 ##### #####
 # # # # #
 # # # # # # # # # #
#########################

bitset

Provides the bitset type

aya> 8 bitset! :b
[0 0 0 0 0 0 0 0]bitset!
aya> 3 b.set
aya> 5 b.set
aya> b
[0 0 0 1 0 1 0 0]bitset!
aya> b.count
2

canvas

Graphics library for creating images and animations. See
examples/canvas for more examples.

[image: Vaporwave City]

Vaporwave City

[image: 3D Cube]

3D Cube

color

The color library defines basic color constructors and conversions.

aya> 14 57 100 color!
(14 57 100) color!

aya> color.colors.violet :violet
(238 130 238) color!

aya> violet.hsv
[300 .45378151 .93333333]

aya> violet.hex
"ee82ee"

aya> 5 color.colors.red color.colors.blue.grad
[
 (255 0 0) color!
 (191 0 63) color!
 (127 0 127) color!
 (63 0 191) color!
 (0 0 255) color!
]

csv

Provides functions for reading and writing CSV files

aya> "examples/data/simple.csv" csv.read
{,
 [
 [1 2 3]
 [4 5 6]
 [7 8 9]
]:data;
 nil:rownames;
 ["A" "B" "C"]:colnames;
}

dataframe

The dataframe type is an interface for working with tables. CSV
files can be directly imported and modified or the data can be generated
by the program itself.

aya> {, [[1 2 3][4 5 6]]:data ["x" "y" "z"]:colnames} dataframe!
 x y z
0 | 1 2 3
1 | 4 5 6

aya> {, [[1 2 3][4 5 6]]:data ["x" "y" "z"]:colnames} dataframe! :df
 x y z
0 | 1 2 3
1 | 4 5 6

aya> df.["x"]
[1 4]

aya> "examples/data/simple.csv" dataframe.read_csv
 A B C
0 | 1 2 3
1 | 4 5 6
2 | 7 8 9

date

The date script provides a basic interface for the date parsing
operators Mh and MH. It also provides basic date unit addition
and subtraction.

aya> date.now
May 01, 2017 12:53:25 PM

aya> date.now.year
2017

aya> date.now 2 dates.month +
Jul 01, 2017 8:53:42 AM

aya> date.now 2 dates.month + .mmddyy
"07/01/17"

enum

The enum library defines the enum keyword which uses
dictionaries and metatables to create enums.

aya> enum shape {circle triangle square}

aya> shape
shape

aya> shape :T
::enum

aya> shape.circle
shape.circle

aya> shape.circle :T
::shape

aya> shape.circle shape.circle =
1

golf

golf defines many short variables that are useful when golfing. It
also uses the Mk operator to add additional single character
operators. In the following code, all variables ì, ¶, ¦,
¥ and r are defined in the golf script.

aya> .# Generate and print an addition table
aya> 6r_ì¶¦¥
 0 1 2 3 4 5
 1 2 3 4 5 6
 2 3 4 5 6 7
 3 4 5 6 7 8
 4 5 6 7 8 9
 5 6 7 8 9 10

Sets default values for many variables

aya> [a b c d k l p w z ì í]
[2 3 10 1000 [] 3.14159265 -1 0 {+} {-}]

image

Library for reading and writing images.

aya> "images/logo.png" image.read :img
(image 300x300)
aya> img.width
300
aya> img.pixels 5 .<
[
 [255 255 255]
 [255 255 255]
 [255 255 255]
 [255 255 255]
 [255 255 255]
]

io

Defines the file and path types

json

Library for reading and writing json

math

The math library provides many math functions

matrix

The matrix library provides a basic interface and operator overloads
for working with matrices.

aya> 3 3 10 matrix.randint :mat
| 7 8 2 |
| 8 7 3 |
| 8 4 4 |

aya> mat [[0 1] 0] I
| 7 |
| 8 |

aya> mat [[0 1] 0] I .t
| 7 8 |

aya> mat 2 ^ 100 -
| 29 20 -54 |
| 36 25 -51 |
| 20 8 -56 |

missing

Provides the missing type for working with missing data

mp

Metaprogramming library

plot

Plotting interface. See examples/plot

queue

Queue data structure.

random

Functions for woring with random numbers.

set

The set script defines a set type and many operator overloads.
It defines s as a prefix operator for the set constructor allowing
the syntax s[...] to create sets.

aya> s[1 2 3 2 2 1] .# == ([1 2 3 2 2 1] set!)
s[1 2 3]

aya> s[1 2 3] s[2 3 4] |
s[1 2 3 4]

aya> s[1 2 3] s[2 3 4] &
s[2 3]

aya> s[1 2 3] s[2 5] /
s[1 3]

shell

A shell-like interface for the aya REPL.

socket

Socket and socket server interface.

stack

Stack data structure.

stats

Provides several statistics functions.

sys

Provides functions for working with the system such as getting or
changing the working directory.

terminal

Functions for formatting text in the terminal (bold, color, etc)

turtle

Turtle library. See examples/turtle

viewmat

Provides the viewmat function which is used to generate a heatmap
visualization of a 2d array. See examples/canvas/julia

Footnotes

Canvas Input

You can poll for mouse and keyboard input using these standard library
instructions.

The graphics.click_events, graphics.move_events and
graphics.typed_chars instructions provide you with a list of events
that occurred since the last time the instruction was called.

The graphics.pressed_buttons and graphics.pressed_keys
instructions yield the currently pressed / held buttons and keys.

Mouse Events

Click Events

Lists the mouse clicks since the last time this instruction was
executed.

graphics.click_events pushes a list of dictionaries with the
following keys onto the stack:

	x (num) The x-coordinate the click occurred at.

	y (num) The y-coordinate the click occurred at.

	button (num) The button number the was clicked. (See Mouse
Buttons)

	clicks (num) The amount of successive clicks. (Useful for
detecting double-clicks)

aya> my_canvas.id :{graphics.click_events}
[{
 128 :x;
 256 :y;
 1 :button;
 3 :clicks;
}]

Pressed Buttons

Lists the currently held mouse buttons.

graphics.pressed_buttons pushes a list of currently held
button-numbers onto the stack. (See Mouse Buttons)

aya> my_canvas.id :{graphics.pressed_buttons}
[1 3]

Move Events

Lists the mouse movements since the last time this instruction was
executed.

graphics.move_events pushes a list of dictionaries with the
following keys onto the stack:

	x (num) The x-coordinate the cursor moved to.

	y (num) The y-coordinate the cursor moved to.

aya> my_canvas.id :{graphics.move_events}
[{
 128 :x;
 256 :y;
} {
 130 :x;
 260 :y;
} {
 132 :x;
 264 :y;
}]

Keyboard Events

Pressed Keys

Lists the currently held keyboard keys.

graphics.pressed_keys pushes a list of dictionaries with the
following keys onto the stack:

	key_name (str) The name of the pressed key. (See Keyboard
Keys)

	keycode (num) An integer representation of the key.

	location_name (str) The name of the location of the key. (See
Keyboard Locations)

	location (num) An integer representation of the location.

aya> my_canvas.id :{graphics.pressed_keys}
[{
 "A" :key_name;
 65 :keycode;
 "STANDARD" :location_name;
 1 :location;
} {
 "CONTROL" :key_name;
 17 :keycode;
 "LEFT" :location_name;
 2 :location;
}]

Typed Characters

Lists the Unicode characters that were typed since the last time this
instruction was executed.

graphics.typed_chars pushes a string of typed characters onto the
stack.

aya> my_canvas.id :{graphics.typed_chars}
"Hello, World!"

Overview of possible values

Mouse Buttons

	Number

	Button

	1

	left

	2

	middle

	3

	right

	4

	back

	5

	forward

If your mouse has more than 5 buttons, you may see larger numbers as
well.

Keyboard Keys

	Keycode

	Key Name

	0

	UNDEFINED

	3

	CANCEL

	8

	BACK_SPACE

	9

	TAB

	10

	ENTER

	12

	CLEAR

	16

	SHIFT

	17

	CONTROL

	18

	ALT

	19

	PAUSE

	20

	CAPS_LOCK

	21

	KANA

	24

	FINAL

	25

	KANJI

	27

	ESCAPE

	28

	CONVERT

	29

	NONCONVERT

	30

	ACCEPT

	31

	MODECHANGE

	32

	SPACE

	33

	PAGE_UP

	34

	PAGE_DOWN

	35

	END

	36

	HOME

	37

	LEFT

	38

	UP

	39

	RIGHT

	40

	DOWN

	44

	COMMA

	45

	MINUS

	46

	PERIOD

	47

	SLASH

	48

	0

	49

	1

	50

	2

	51

	3

	52

	4

	53

	5

	54

	6

	55

	7

	56

	8

	57

	9

	59

	SEMICOLON

	61

	EQUALS

	65

	A

	66

	B

	67

	C

	68

	D

	69

	E

	70

	F

	71

	G

	72

	H

	73

	I

	74

	J

	75

	K

	76

	L

	77

	M

	78

	N

	79

	O

	80

	P

	81

	Q

	82

	R

	83

	S

	84

	T

	85

	U

	86

	V

	87

	W

	88

	X

	89

	Y

	90

	Z

	91

	OPEN_BRACKET

	92

	BACK_SLASH

	93

	CLOSE_BRACKET

	96

	NUMPAD0

	97

	NUMPAD1

	98

	NUMPAD2

	99

	NUMPAD3

	100

	NUMPAD4

	101

	NUMPAD5

	102

	NUMPAD6

	103

	NUMPAD7

	104

	NUMPAD8

	105

	NUMPAD9

	106

	MULTIPLY

	107

	ADD

	108

	SEPARATOR

	109

	SUBTRACT

	110

	DECIMAL

	111

	DIVIDE

	112

	F1

	113

	F2

	114

	F3

	115

	F4

	116

	F5

	117

	F6

	118

	F7

	119

	F8

	120

	F9

	121

	F10

	122

	F11

	123

	F12

	127

	DELETE

	128

	DEAD_GRAVE

	129

	DEAD_ACUTE

	130

	DEAD_CIRCUMFLEX

	131

	DEAD_TILDE

	132

	DEAD_MACRON

	133

	DEAD_BREVE

	134

	DEAD_ABOVEDOT

	135

	DEAD_DIAERESIS

	136

	DEAD_ABOVERING

	137

	DEAD_DOUBLEACUTE

	138

	DEAD_CARON

	139

	DEAD_CEDILLA

	140

	DEAD_OGONEK

	141

	DEAD_IOTA

	142

	DEAD_VOICED_SOUND

	143

	DEAD_SEMIVOICED_SOUND

	144

	NUM_LOCK

	145

	SCROLL_LOCK

	150

	AMPERSAND

	151

	ASTERISK

	152

	QUOTEDBL

	153

	LESS

	154

	PRINTSCREEN

	155

	INSERT

	156

	HELP

	157

	META

	160

	GREATER

	161

	BRACELEFT

	162

	BRACERIGHT

	192

	BACK_QUOTE

	222

	QUOTE

	224

	KP_UP

	225

	KP_DOWN

	226

	KP_LEFT

	227

	KP_RIGHT

	240

	ALPHANUMERIC

	241

	KATAKANA

	242

	HIRAGANA

	243

	FULL_WIDTH

	244

	HALF_WIDTH

	245

	ROMAN_CHARACTERS

	256

	ALL_CANDIDATES

	257

	PREVIOUS_CANDIDATE

	258

	CODE_INPUT

	259

	JAPANESE_KATAKANA

	260

	JAPANESE_HIRAGANA

	261

	JAPANESE_ROMAN

	262

	KANA_LOCK

	263

	INPUT_METHOD_ON_OFF

	512

	AT

	513

	COLON

	514

	CIRCUMFLEX

	515

	DOLLAR

	516

	EURO_SIGN

	517

	EXCLAMATION_MARK

	518

	INVERTED_EXCLAMATION_MARK

	519

	LEFT_PARENTHESIS

	520

	NUMBER_SIGN

	521

	PLUS

	522

	RIGHT_PARENTHESIS

	523

	UNDERSCORE

	524

	WINDOWS

	525

	CONTEXT_MENU

	61440

	F13

	61441

	F14

	61442

	F15

	61443

	F16

	61444

	F17

	61445

	F18

	61446

	F19

	61447

	F20

	61448

	F21

	61449

	F22

	61450

	F23

	61451

	F24

	65312

	COMPOSE

	65368

	BEGIN

	65406

	ALT_GRAPH

	65480

	STOP

	65481

	AGAIN

	65482

	PROPS

	65483

	UNDO

	65485

	COPY

	65487

	PASTE

	65488

	FIND

	65489

	CUT

For more information, check the KeyEvent
javadoc[#1]

Keyboard Locations

	Location Code

	Location Name

	0

	UNKNOWN

	1

	STANDARD

	2

	LEFT

	3

	RIGHT

	4

	NUMPAD

For more information, check the KeyEvent
javadoc[#2]

Footnotes

[#1]
https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/event/KeyEvent.html

[#2]
https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/event/KeyEvent.html

Debugging

Aya has built-in support for setting breakpoints using the bp
command. For example:

{a b : c,
 a b + :c;
 [a b]
 bp
 c J
}:fn;

Calling this function with pause execution at the location of bp and
open a shell for inspection.

aya> 1 2 fn
Execution paused, enter '.' to continue
Stack: [1 2]
Next instructions: c J

aya (debug)> a
1

aya (debug)> c
3

aya (debug)> .
[1 2 3]

Setting __aya__.ignore_breakpoints to 1 will disable breakpoints
in the session and setting it to 0 will enable them. It is set to
0 by default.

aya> 1 __aya__.:ignore_breakpoints;

aya> 1 2 fn
[1 2 3]

aya> 0 __aya__.:ignore_breakpoints;

aya> 1 2 fn
Execution paused, enter '.' to continue
...

Footnotes

Index

Dictionaries

A dictionary is a set of key-value pairs. The keys must always be valid
variable names. A dictionary literal is created using a block with an
empty header. The block is evaluated and all variables are in assigned
in the scope of the dictionary.

{,
 <dictionary body>
}

Below is a simple dictionary example.

.# Define a simple dictionary
{,
 1:one;
 2:two;
 3:three;
}:numbers;

Empty dictionaries are created if the block and the header are empty.

aya> {,}
{,
}

Accessing Values

Access variables are used to access variables in dictionaries and user
types. To create an access variables, use a dot before the variable
name.

aya> numbers .one
1

.# whitespace is optional
aya> numbers.two
2

Assigning / Creating Values

Dictionary values can be assigned using the .: operator.

aya> {, 1:a 2:b} :d
{,
 1:a;
 2:b;
}
aya> 4 d.:a
{,
 4:a;
 2:b;
}
aya> 9 d.:c
{,
 4:a;
 2:b;
 9:c;
}

They may also be dynamically assigned using the following syntax:

item dict.:[key]

where key is a Symbol.

For example:

aya> {, 0:x } :dict;
aya> 1 dict.:[::y]
aya> dict
{,
 0:x;
 1:y;
}

aya> dict :# {k v, v 1 + dict.:[k]}
aya> dict
{,
 1:x;
 2:y;
}

Metatables

In Aya, metatables can be used to define custom types with separate
functionality and moderate operator overloading. User types are
represented internally as an array of objects paired with a dictionary.
Any dictionary can contain a read-only set of variables as a metatable.
Metatables typically contain functions that act on the dictionaries
values. For example, if we define the metatable

{, {self, self.x self.y +}:sum; {}:donothing; } :meta;

and the dictionary

{, 1:x 2:y {}:none } :dict;

we can set the metatable using the MO operator like so

aya> dict meta MO
{,
 1:x;
 2:y;
 {}:none;
}

We can see that the dict still has the values x and y but it
also now has a hidden entry for the key sum in its metatable. When we
call the metatable variable, the dictionary will be left on the stack
and the metatable value will be evaluated.

aya> dict.sum
3
aya> dict.donothing
{,
 1:x;
 2:y;
 {}:none;
}

We can still add and access dictionary values normally. If we overwrite
a metatable key, it will override the value locally in the dictionary,
not the entire metatable.

aya> {, 1:x 2:y} meta MO :a
{,
 1:x;
 2:y;
}
aya> {, 3:x 4:y} meta MO :b
{,
 3:x;
 4:y;
}
aya> {;"Something!":P} a.:donothing
{,
 1:x;
 2:y;
 {; "Something!" :P}:donothing;
}
aya> a.donothing
Something!
aya> b.donothing
{,
 3:x;
 4:y;
}

User-Defined Types

Using metatables, dictionaries, and overloading we can define our own
types (or “classes”). Here we will first define a simple 2D vector type
and then walk through each of the import steps involved in making it.

{,
 .# Constructor
 {xN yN,
 {, x:x y:y} vec MO
 }:new;

 .# Member functions

 {self,
 "<$(self.x),$(self.y)>"
 }:repr:str;

 {self,
 self.x 2^ self.y 2^ + Mq
 }:length;

 .# Operator Overload (+)
 {a b,
 {, a.x b.x+:x a.y b.y+:y } vec MO
 }:add;

}:vec;

Object Creation

In order to create a an instance of a user type, we use the MO operator
to assign a metatable to a new dictionary. To create a vector object, we
create a dictionary containing the default values for x and y
and then assign vec as its metatable.

.# Create a vec object
{, 0:x 0:y} vec MO

This syntax can be a bit repetitive. In order to address this issue, we
introduce constructors.

Constructor

If there exists a function new in the metatable definition, it will be
used as the constructor for the object. The constructor can be called in
the following ways:

.# Calling the .new function manually
aya> 3 6 vec.new
<3,6>

.# Using the ! operator after the name of the dictionary
aya> 1.1 3 vec!
<1.1,3>

Notice that when the object is printed to the console, it prints using
our definition of .repr. Aya will automatically use .repr and
.str to convert objects to strings whenever necessary (
e.g. printing to the console, calling the P (cast to string)
operator, etc.). This is discussed in the next section.

String Conversion

If there exists a function str defined for a given user type, Aya
will call it whenever the type is converted into a string. If there
exists a function repr defined for a given user type, Aya will use
it whenever it prints the object to the console. Aya expects a string to
be returned from these functions but does not check before converting.
If they do not return a string, unexpected results may occur. In the
vec example, we defined a repr and str function and we can
see the result every time the vec is printed to the console.

aya> 1 2 vec! .# Uses .repr
<1,2>

aya> 1 2 vec! P .# Uses .str
"<1,2>"

Operator Overloading

Several operators have the capability to be overloaded be defining
functions with special names. For example, the function add will be
called if the user calls + on a user object The following operators
may be overloaded:

+ - * / & | $ % P Q

These operators and their function names can be found by searching
“overloadable” in the QuickSearch feature of aya.

In our vec example, we defined the following function:

{a b,
 [a.x b.x+ a.y b.y+] vect MO
}:add;

Now the following statements are equivalent:

aya> 1 2 vec! 3 4 vec!.plus
<4,6>
aya> 1 2 vec! 3 4 vec! +
<4,6>

NOTE: The number of arguments used in an overloaded function be
greater than or equal to the number of arguments the operator normally
takes. For example, the + operator must take at least two arguments and
the $ operator must take at least 1.

For more examples on using dictionaries and metatables as user types,
see the standard library files for matrix, color, and date.

Footnotes

Running Examples

There are many example scripts in the examples/ directory. To run an
example, type its name followed by the example command:

aya> "nth_fib" example
The first 10 fib numbers are [1 1 2 3 5 8 13 21 34 55]

Some examples are in subfolders such as canvas, turtle, or
plot. Run them using subfolder/example_name:

aya> "canvas/mandelbrot" example

[image: img/mandelbrot_example.png]

img/mandelbrot_example.png

Footnotes

Ticks

Sometimes we may need to traverse the stack backward before it has been
evaluated. The tick (`) operator will move the item just after it back
through the instructions 1 place. This will occur during runtime just
BEFORE the item is evaluated.

aya> 1 `2 3 4
1 3 2 4

The object will be moved back BEFORE being evaluated

aya> 1 `+ 1 .# => 1 1 +
2

Ticks can be stacked. The object will move back one place for every
tick.

aya> ``+ 3 4 .# => 3 4 +
7

Since ticks are evaluated at run time, users can define their own
“infix” operators.

aya> {`*}:times;
aya> 3 times 4
12

Groups

Objects on the stack can be grouped using parenthesis. Items in
parenthesis are dumped and evaluated at run time. They are similar to a
block followed by a ~.

aya> {1 2 + 3}~ +
6
aya> (1 2 + 3) +
6

Grouped items are treated as one item by the interpreter and are
therefore especially useful when used with the tick operator.

aya> `+ (1 2)
3

If a block is the only thing inside a group, it will be automatically
dumped and evaluated.

aya> 1 2 {+}
1 2 {+}
aya> 1 2 ({+})
3
aya> 1 2 ({n m, n m +}) .# (This allows groups to have arguments)
3

Footnotes

	Tour: basic introduction and interesting examples

	verbose / terse example

	turtle

	plot

	mandelbrot

	animation (ball or maybe particles)

	
	Basic Language Features:

	stack

	essential syntax

	comment syntax

	types

	variables

	basic operators

	basic control

	
	Control

	if, if/else, elseif

	counted loop

	for loop

	while loop

	exceptions

	
	Functions

	basic functions

	local variables & scope

	args

	pass-by-ref/value

	
	Numbers

	Number types

	Number literals

	
	Lists

	common operations

	generators

	indexing (get/set)

	joining

	iteration / broadcasting

	grabbing

	comprehension

	
	Characters & Strings

	character literals

	string literals

	escaped chars

	long literals

	string operations

	string interpolation

	
	Symbols

	Common operations on symbols

	
	Dictionaries

	basic usage

	intro to metatables

	
	User types

	struct

	class

	member functions

	operator overloading

	
	Common patterns

	
	Debugging

	
	Advanced topics / tips

	advanced metatables

	ticks & groups

	Override a named character to add a new op

	
	Table of operators

	
	Standard library

	Autogenerated documentation for each module in the standard
library

Footnotes

 nav.xhtml

 Table of Contents

 		
 Welcome to Aya’s documentation!

 		
 Tour of Aya

 		
 Basic language features

 		
 Running / Installation

 		
 Running Examples

 		
 Command Line Arguments

 		
 System Install

 		
 Syntax Overview

 		
 Execution

 		
 Comments

 		
 Line Comments

 		
 Block Comments

 		
 Variables

 		
 Special Variables

 		
 Numbers

 		
 Integers & Decimals

 		
 Negative Numbers

 		
 Big Numbers

 		
 Hexadecimal Literals

 		
 Binary Literals

 		
 Scientific/“e” Notation

 		
 Fractional Numbers

 		
 PI Times

 		
 Root Constants

 		
 Complex numbers

 		
 Number Constants

 		
 Characters

 		
 Standard Characters

 		
 Hex Character Literals

 		
 Named Character Literals

 		
 Strings

 		
 Standard String Literals

 		
 Special Characters in Strings

 		
 String Interpolation

 		
 Long String Literals

 		
 Symbols

 		
 Lists

 		
 List Literals

 		
 List Stack Captures

 		
 List Comprehensions

 		
 Indexing

 		
 Dictionaries

 		
 Dictionary Literals

 		
 Getting Values

 		
 Setting Values

 		
 Blocks

 		
 Basic Blocks

 		
 Short Block Notation

 		
 Block Headers

 		
 Operators

 		
 Standard Operators

 		
 “Dot” Operators

 		
 “Colon” Operators

 		
 “Misc” Operators

 		
 Non-Standard “Infix” Stack Operators

 		
 Extension Operators

 		
 User Types

 		
 Struct

 		
 Golf Utilities

 		
 Golf Constants

 		
 Operators

 		
 Type Abbreviations

 		
 Operator Table

 		
 Numbers

 		
 Special Number Literals

 		
 Misc. Number Literals

 		
 Scientific Notation

 		
 PI Times

 		
 Root Constants

 		
 Lists

 		
 Essential List Operations

 		
 List Indexing

 		
 Essential List Operators

 		
 Generators

 		
 List comprehension

 		
 The Broadcast Operator

 		
 Characters

 		
 Special Characters

 		
 Hex character literals

 		
 Named Characters

 		
 Strings

 		
 String Interpolation

 		
 Long String Literals

 		
 Blocks

 		
 Block Header

 		
 Arguments

 		
 Argument Type Assertions

 		
 Local Declarations

 		
 Keyword Arguments

 		
 Functions

 		
 Dictionaries

 		
 Accessing Values

 		
 Assigning / Creating Values

 		
 Metatables

 		
 Variables

 		
 Variable Scope

 		
 User-Defined Types

 		
 Classes

 		
 Constructor

 		
 Functions

 		
 Print/String Overloading

 		
 Operator Overloading

 		
 Class Variables & Functions

 		
 Inheritance

 		
 Structs

 		
 Internals

 		
 Special Metatable Variables

 		
 Constructor

 		
 Metaprogramming

 		
 Blocks

 		
 Macros

 		
 Macro Example

 		
 Standard library

 		
 asciiart

 		
 bitset

 		
 canvas

 		
 color

 		
 csv

 		
 dataframe

 		
 date

 		
 enum

 		
 golf

 		
 image

 		
 io

 		
 json

 		
 math

 		
 matrix

 		
 missing

 		
 mp

 		
 plot

 		
 queue

 		
 random

 		
 set

 		
 shell

 		
 socket

 		
 stack

 		
 stats

 		
 sys

 		
 terminal

 		
 turtle

 		
 viewmat

 		
 Canvas Input

 		
 Mouse Events

 		
 Click Events

 		
 Pressed Buttons

 		
 Move Events

 		
 Keyboard Events

 		
 Pressed Keys

 		
 Typed Characters

 		
 Overview of possible values

 		
 Mouse Buttons

 		
 Keyboard Keys

 		
 Keyboard Locations

 		
 Debugging

_images/vaporwave_city.png

_images/cube.gif

_images/mandelbrot_example.png

_static/minus.png

_static/plus.png

_static/file.png

